
C Programming for
Microcontrollers

 Featuring ATMEL’s AVR Butterfly and the Free

WinAVR Compiler

Joe Pardue

SmileyMicros.com

Copyright © 2005 by Joe Pardue, All rights reserved.
Published by Smiley Micros

Smiley Micros
5601 Timbercrest Trail
Knoxville, TN 37909
Email: book@SmileyMicros.com
Web: http://www.SmileyMicros.com

ISBN 0-9766822-0-6

Products and services named in this book are trademarks or registered trademarks of their respective companies. In all
instances where Smiley Micros is aware of a trademark claim, the product name appears in initial capital letters, in all
capital letters, or in accordance with the vendor’s capitalization preferences. Readers should contact the appropriate
companies for complete information on trademarks and trademark registrations. All trademarks and registered trademarks
in this book are the property of their respective holders.

No part of this book, except the programs and program listings, may be reproduced in any form, or stored in a database of
retrieval system, or transmitted or distributed in any form, by any means, electronic, mechanical photocopying, recording,
or otherwise, without the prior written permission of Smiley Micros or the author. The programs and program listings, or
any portion of these, may be stored and executed in a computer system and may be incorporated into computer programs
developed by the reader.

NONE OF THE HARDWARE USED OR MENTIONED IN THIS BOOK IS GUARANTEED OR WARRENTED IN
ANY WAY BY THE AUTHOR. THE MANUFACTURERS OR THE VENDORS THAT SHIPPED TO YOU MAY
PROVIDE SOME COVERAGE, BUT THAT IS BETWEEN YOU AND THEM. NEITHER THE AUTHOR NOR
SMILEY MICROS CAN PROVIDE ANY ASSISTANCE OR COMPENSATION RESULTING FROM PROBLEMS
WITH THE HARDWARE.

PAY CAREFUL ATTENTION TO WHAT YOU ARE DOING. I FRIED MY FIRST BUTTERFLY WHILE
DEVELOPING THE ADC PROJECT. MY NICKNAME AT ONE COMPANY WAS ‘SMOKY JOE’ FOR MY
TENDENCY TO MAKE DEVICES ISSUE COPIOUS QUANTITIES OF SMOKE. BLOWING STUFF UP IS A
NATURAL PART OF MICROCONTROLLER DEVELOPMENT. SET ASIDE SOME FUNDS TO COVER YOUR
MISTAKES.

REMEMBER – YOUR BUTTERFLY BOARD IS NOT GUARANTEED OR WARRENTED IN ANY WAY. YOU
FRY IT YOU EAT IT. YOU CAN GET ANOTHER FROM DIGI-KEY FOR $19.99 (Spring 2005) + SHIPPING
AND HANDLING.

The information, computer programs, schematic diagrams, documentation, and other material in this book are provided “as
is,” without warranty of any kind, expressed or implied, including without limitation any warranty concerning the
accuracy, adequacy or completeness of the material or the results obtained from the material or implied warranties.
Including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose are disclaimed.
Neither the publisher nor the author shall be responsible for any claims attributable to errors, omissions, or other
inaccuracies in the material in this book. In no event shall the publisher or author be liable for direct, indirect, special,
exemplar, incidental, or consequential damages in connection with, or arising out of, the construction, performance, or
other use of the material contained herein. Including, but not limited to, procurement of substitute goods or services; loss
of use, data, or profits; or business interruption however caused and on any theory of liability, whether in contract, strict
liability, or tort (including negligence or otherwise) arising in any ay out of use, even if advised of the possibility of such
damage. In no case shall liability be implied for blindness or sexual impotence resulting from reading this statement
although the author suggests that if you did read all this then you really need to get a life.

For Marcia

God only knows what I'd be without you…

Table of Contents:
Chapter 1: Introduction ... 11

Why C?.. 12
Why AVR?... 12
Goals ... 14

Chapter 2: Quick Start Guide .. 17
Software .. 19

WinAVR – Oh, Whenever…... 19
Programmers Notepad... 19
AVRStudio – FREE and darn well worth it. ... 20
Br@y++ Terminal: .. 20

Hardware ... 21
Constructing Your Development Platform.. 21

Blinking LEDs – Your First C Program ... 27
Write it in Programmers Notepad ... 27
Download to the Butterfly with AVRStudio.. 31
Blinky Goes Live .. 33
Simulation with AVRStudio .. 35

GOOD GRIEF! ... 37
Chapter 3: A Brief Introduction to C – What Makes Blinky Blink? 39

Comments ... 39
Include Files .. 39
Expressions, Statements, and Blocks .. 39
Operators ... 40
Flow Control ... 40
Functions ... 41
The Main() Thing .. 42

Chapter 4: C Types, Operators, and Expressions .. 45
Data Types and Sizes... 45
Variable Names ... 49
Constants ... 49
Declarations... 50
Arithmetic Operators... 50
Relational and Logical Operators.. 52
Bitwise Operators.. 53
Assignment Operators and Expressions.. 61
Conditional Expressions.. 62

Precedence and Order of Evaluation... 62
Projects.. 65

Port Input and Output.. 65
Cylon Eye Speed and Polarity Control ... 70

Chapter 5: C Control Flow.. 73
Statements and Blocks .. 73
If-Else and Else-If ... 74
Switch.. 75
Loops – While, For and Do-while... 78
Break and Continue... 79
Goto and Labels .. 80
A few practical examples: strlen, atoi, itoa, reverse...................................... 81

Chapter 6: C Functions and Program Structures... 87
Function Basics ... 87
Returns .. 89
Variables External, Static, and Register .. 90
Scope... 91
Headers.. 92
Blocks.. 92
Initialization .. 92
Recursion .. 93
Preprocessor .. 94
Projects.. 98

Is anybody out there? Communicating with a PC..................................... 98
Chapter 7: Microcontroller Interrupts and Timers .. 109

Interrupts ... 109
Projects.. 114

Grab your joystick – and test your interrupts.. 114
Timers/Counters.. 119
Calibrating the Butterfly oscillator: .. 121

Projects.. 128
Precision Blinking... 128
Pulse Width Modulation – LED Brightness Control 134
Pulse Width Modulation - Motor Speed Control 137
Speedometer.. 144

Chapter 8: C Pointers and Arrays.. 153
Addresses of variables .. 153

Function Arguments .. 157
Arrays .. 159
FIFOs and LIFOs: Stacks and Queues (Circular Buffers) 167
Function Pointers... 169
Complex Pointer and Array Algorithms.. 170
Projects .. 171

Messenger.. 171
Does anybody know what time it is? A Real Time Clock....................... 178
Music to my ears. “Play it again Sam.”... 189

Chapter 9 – Digital Meets Analog – ADC and DAC.. 207
But First - A Debugging Tale .. 207
Analog to Digital Conversion ... 210
Projects .. 216

DAC and ADC - Function Generator / Digital Oscilloscope.................. 227
Chapter 10: C Structures ... 241

Structure Basics... 241
Structures and Functions ... 243
Structure Arrays... 246
Typedef.. 246
Unions ... 247
Bit-fields.. 247
Projects .. 251

Finite State Machine.. 251
Chapter 11 The Butterfly LCD.. 261

PC to LCD test program.. 262
Conclusion... 270

Appendix 1: Project Kits ... 273
Appendix 2: Soldering Tutorial... 275
Appendix 3: Debugging Tale .. 279
Appendix 4: ASCII Table ... 283
Appendix 5: Decimal, Hexadecimal, and Binary.. 285
Appendix 6: Motor Speed Control Wheel... 287
Appendix 7: HyperTerminal.. 289
Index.. 295

Table of Figures:
Figure 1: Dennis Ritchie, inventor of the C programming language stands next to

Ken Thompson, original inventor of Unix, designing the original Unix
operating system at Bell Labs on a PDP-11.. 11

Figure 2: The Butterfly front... 21
Figure 3: RS-232 connections... 22
Figure 4: Battery holder, switch, and batteries. .. 23
Figure 5: External battery connection to Butterfly ... 23
Figure 6: Butterfly hooked up to RS-232.. 24
Figure 7: Bray's Terminal.. 24
Figure 8: Enter name to send to the Butterfly... 25
Figure 9: Blinky wiring diagram and photo of wired board 26
Figure 10: Hardware setup for Blinky... 27
Figure 11: From the cover of the Battlestar Galactica comic Red Cylon.............. 34
Figure 12: from page 92 of the ATMega169 data book .. 58
Figure 13 ATMega169 Block Diagram... 65
Figure 14: Port I/O switch input and LED output... 69
Figure 15: Bit 7 high Figure 16: Bit 7 low... 71
Figure 17: Pulse Width Modulation Duty Cycle... 134
Figure 18: Motor Speed Control Schematic and Parts.. 137
Figure 19: Motor Speed Control Breadboard Labeled.. 138
Figure 20: Motor Speed Control Hardware .. 138
Figure 21: Motor Base .. 139
Figure 22: Motor Wheel Stationary and Spinning .. 139
Figure 23: Opto Interrupt Switch - H21A1... 145
Figure 24: Opto Interrupter Glued on Motor Base ... 145
Figure 25: Speedometer .. 146
Figure 26: The PDP-11 could be programmed by switches, though Dennis Ritchie

used a Teletype machine to write the C programming language. 153
Figure 27: 10-bit successive approximation ADC Figure................................... 211
Figure 28: Potentiometer Schematic ... 225
Figure 29: Voltage measurement... 226
Figure 30: R-2R resistor ladder... 228
Figure 31: Breadboard of R-2R DAC... 228
Figure 32: Breadboard R-2R DAC wiring.. 229
Figure 33: R-2R DAC with Oscilloscope ... 229
Figure 34: Function Generator / Digital Oscilloscope on HyperTerminal.......... 230

Figure 35: Sine Wave Figure 36: Square Wave.. 231
Figure 37: Triangle Wave Figure 38: Sawtooth Wave 231
Figure 39 Butterfly Menu.. 253
Figure 40: Cheap soldering iron, solder and wick from JAMECO..................... 276
Figure 41: Seasoning the tip.. 276

Chapter 1: Introduction

Chapter 1: Introduction

C Programming and microcontrollers are two big topics, practically continental in
size, and like continents, are easy to get lost in. Combining the two is a little like
traipsing from Alaska to Tierra del Fuego. Chances are you’ll get totally lost and
if the natives don’t eat you, your infected blisters will make you want to sit and
pout. I’ve been down this road so much that I probably have my own personal rut
etched in the metaphorical soil, and I can point to all the sharp rocks I’ve stepped
on, all the branches that have whacked me in the face, and the bushes from which
the predators leapt. If you get the image of a raggedy bum stumbling through the
jungle, you’ve got me right. Consider this book a combination roadmap,
guidebook, and emergency first aid kit for your journey into this fascinating, but
sometimes dangerous world.

I highly recommend that you get the book, ‘The C Programming Language –
second edition’ by Kernighan and Ritchie, here after referred to as K&R. Dennis
Ritchie, Figure 1, wrote C, and his book is the definitive source on all things C.

Figure 1: Dennis Ritchie, inventor of the C programming language stands next to Ken

Thompson, original inventor of Unix, designing the original Unix operating system at Bell
Labs on a PDP-11

11

Chapter 1: Introduction

12

I have chosen to follow that book’s organization in this book’s structure. The main
difference is that their book is machine independent and gives lots of examples
based on manipulating text, while this book is machine dependent, specifically
based on the AVR microcontroller, and the examples are as microcontroller
oriented as I can make them.

Why C?

Back in the dark ages of microprocessors, software development was done
exclusively in the specific assembly language of the specific device. These
assembly languages were character based ‘mnemonic’ substitutions for the
numerical machine language codes. Instead of writing something like: 0x12 0x07
0xA4 0x8F to get the device to load a value into a memory location, you could
write something like: MOV 22 MYBUFFER+7. The assembler would translate
that statement into the machine language for you. I’ve written code in machine
language (as a learning experiment) and believe me when I tell you that assembly
language is a major step up in productivity. But a device’s assembly language is
tied to the device and the way the device works. They are hard to master, and
become obsolete for you the moment you change microcontroller families. They
are specific purpose languages that work only on specific microprocessors. C is a
general-purpose programming language that can work on any microprocessor that
has a C compiler written for it. C abstracts the concepts of what a computer does
and provides a text based logical and readable way to get computers to do what
computers do. Once you learn C, you can move easily between microcontroller
families, write software much faster, and create code that is much easier to
understand and maintain.

Why AVR?

As microprocessors evolved, devices increased in complexity with new hardware
and new instructions to accomplish new tasks. These microprocessors became
known as CISC or Complex Instruction Set Computers. Complex is often an
understatement; some of the CISCs that I’ve worked with have mind-numbingly
complex instruction sets. Some of the devices have so many instructions that it
becomes difficult to figure out the most efficient way to do anything that isn’t
built into the hardware.

Chapter 1: Introduction

13

Then somebody figured that if they designed a very simple core processor that
only did a few things but did them very fast and efficiently, they could make a
much cheaper and easier to program computer. Thus was born the RISC, Reduced
Instruction Set Computers. The downside was that you had to write additional
assembly language software to do all the things that the CISC computer had built
in. For instance, instead of calling a divide instruction in a CISC device, you
would have to do a series of subtractions to accomplish a division using a RISC
device. This ‘disadvantage’ was offset by price and speed, and is completely
irrelevant when you program with C since the complier generates the assembly
code for you.

Although I’ll admit that ‘CISC versus RISC’ and ‘C versus assembly language’
arguments often seem more like religious warfare than logical discourse, I have
come to believe that the AVR, a RISC device, programmed in C is the best way to
microcontroller salvation (halleluiah brother).

The folks that designed the AVR as a RISC architecture and instruction set while
keeping C programming language in mind. In fact they worked with C compiler
designers from IAR to help them with the hardware design to help optimize it for
C programming.

Since this is an introductory text I won’t go into all the detailed reasons I’ve
chosen the AVR, I’ll just state that I have a lot of experience with other
microcontrollers such as Intel’s 8051, Motorola’s 68xxxes, Zilog’s Z’s, and
Microchip’s PIC’s and I’m done with them (unless adequately paid – hey, I’m no
zealot). These devices are all good, but they require expensive development
boards, expensive programming boards, and expensive software development
tools (don’t believe them about the ‘free’ software, in most cases the ‘free’ is for
code size or time limited versions).

The AVR is fast, cheap, in-circuit programmable, and development software can
be had for FREE (really free, not crippled or limited in any way). I’ve paid
thousands of dollars for development boards, programming boards, and C
compilers for the other devices, but never again -- I like free. The hardware used
in this text, the ATMEL Butterfly Evaluation Board can be modified with a few
components to turn it into a decent development system and the Butterfly and

Chapter 1: Introduction

14

needed components can be had for less than $40.00 (See Appendix 1 Project
Kits). You can’t get a better development system for 10 times this price and you
can pay 100 times this and not get as good.

Okay, maybe I am a zealot.

Goals

What I hope to accomplish is to help you learn some C programming on a
specific microcontroller and provide you with enough foundation knowledge that
you can go off on your own somewhat prepared to tackle the plethora (don’t you
just love that word, say it 10 times real quick) of microcontrollers and C
programming systems that infest the planet.

Both C programming and microcontrollers are best learned while doing projects.
I’ve tried to provide projects that are both useful and enhance the learning
process, but I’ve got to admit that many of the early projects are pretty lame and
are put in mainly to help you learn C syntax and methods.

Suggested Prerequisites:

• You should be able to use Windows applications.
• You should have an elementary knowledge of electronics, or at least be

willing to study some tutorials as you go along so that you’ll know things
like why you need to use a resistor when you light up an LED.

• I’ve received lots of suggestions about what needs to be in this book.
Some folks are adamant that one must first learn assembly language and
microcrocontroller architecture and basic electronics and digital logic and
bla bla bla before even attempting C on microcontrollers. I politely
disagree and say that you should just jump right in learn whats fun for
you. You’ll run across lots of stuff that you will want to learn about, but I
won’t cover in the book so you should be able to bracket your ignorance
(and mine) making a note when you hit something you don’t know but
would like to. Then you can learn it later. I’m using lots of things that
aren’t directly relevant to C programming (like communicating with a
microcontroller from a PC using a serial port or like what the heck is that
transistor motor driver thingee…). If you get really curious, then
GOOGLE for a tutorial on the topic.

Chapter 1: Introduction

15

By the time you complete the text and projects you will:

• Have an intermediate understanding of the C programming language.
• Have a elementary understanding microcontroller architecture.
• Be able to use the WinAVR and AVR Studio tools to build programs.
• Be able to use C to develop microcontroller functions such as:

o Port Inputs and Outputs
o Read a joystick
o Use timers
o Program a Real Time Clock
o Communicate with PC
o Conduct analog to digital and digital to analog conversions
o Measure temperature, light, and voltage
o Control motors
o Make music
o Control the LCD
o Flash LEDs like crazy

On the CD you will find the ATMEL ATMEGA169 data book. At 364 pages, it is
the comprehensive source of information for the microcontroller used on the AVR
Butterfly board. Open it on your PC with Adobe Acrobat and look around a bit:
intimidating isn’t it? But don’t worry; one of the purposes of this text is to give
you enough knowledge so that you can winnow the wheat from the chaff in the
data book and pull out what you need for your C based control applications.

I know how easy it is to get bogged down in all the detail and lose momentum on
this journey, so we’ll begin with the ‘Quick Start’ chapter by learning only enough
to make something interesting happen: kind of a jet plane ride over the territory.
Then we will proceed at a comfortable pace from the simple to the complex using
as interesting examples as I can come up with. I’m partial to LEDs so you are
going to see a lot of flashing lights before we are through, and hopefully the lights
won’t be from you passing out from boredom and boinking your head on the
keyboard.

Chapter 2: Quick Start Guide

Chapter 2: Quick Start Guide

17

The purpose of this quick start guide is to help you modify the Butterfly hardware
so you can use it as a development board and to show you how to use the FREE
software for writing and compiling C code and downloading it from your PC to
the Butterfly.

The AVR Butterfly is an evaluation kit for the ATMEGA169 microcontroller that
was custom designed with an AVR core and peripherals to make it both a general-
purpose microcontroller and an LCD controller. This little board is by far (at this
writing) the lowest cost system for learning and developing that I’ve ever seen. I
don’t know how much these things cost them to make, but Digi-Key
(www.digikey.com) sells them for $19.99 (Spring 2005), which has to be a real
loss leader for ATMEL (www.ATMEL.com). But their loss is our gain, and I’m
sure they are happy to prime-the-pump a little, knowing that we’ll get hooked on
the AVR and buy lots of their product.

It is simply amazing what the Butterfly has built in:

• 100 segment LCD display
• 4 Mbit (that’s 512,000 bytes!) dataflash memory
• Real Time Clock 32.768 kHz oscillator
• 4-way joystick, with center push button
• Light sensor
• Temperature sensor
• ADC voltage reading, 0-5V
• Piezo speaker for sound generation
• Header connector pads for access to peripherals
• RS-232 level converter for PC communications
• Bootloader for PC based programming without special hardware
• Pre-programmed demos with source code
• Built-in safety pin for hanging from you shirt (GEEK POWER!)
• Kitchen sink.

I mean this thing has everything (except a kitchen sink… sorry). If anyone can
find a development platform with anywhere near this much for this price, I want
to hear about it. And, no, I don’t own stock in ATMEL, or work for them, I just

Chapter 2: Quick Start Guide

18

couldn’t find anything that comes close to this system for my goal of teaching C
programming for AVR microcontrollers (or any microcontrollers for that matter).
If I seem to be raving a bit, get used to it, I do that a lot.

There are sufficient instructions on the AVR Butterfly box to show you how to use
all the built-in functions. Play with it now before you risk destroying it in the next
step. Don’t say I didn’t warn you. If you break it, you’ll have to order a new one
from Digi-Key (www.digikey.com). I shudder to think how many of these things
will get burned up, blown up, stepped on, and drenched in coffee. And that’s just
me this morning.

Note: in order to save you money, rather than selling you the Butterfly and the
experiments kits, you will find a parts list (Appendix 1) so that you can buy this
stuff directly from the vendors. But check my website: www.smileymicros.com,
no telling what you’ll find. (Hopefully, not a ‘going out of business’ sale.)

If you purchased the e-book, you can download the WinAVR software from
http://sourceforge.net/projects/winavr (this book uses version 20040404) and the
AVRStudio software from the http://www.atmel.com web site. On the ATMEL
website search for the AVRStudio version 4.11 (later versions may not correlate to
this book). If, for some reason, these sites are not available (I can’t guarantee what
they’ll do to their sites) look on the http://www.smileymicros.com website for
updated information on how to get the software. If you purchased a hard copy of
the book, you will find the software on the accompanying CD.

Don’t get bogged down in all the installation choices given, just accept suggested
defaults so your installation will match this book. And, as an aside, by the time
you install all this software, the WinAVR and the AVRStudio will have new and
improved versions available on their web sites. DON’T USE THEM! This text is
based on the versions on the CD or on the SmileyMicros.com web site and using
the new and improved software may only confuse things. Of course, by the time
you finish this text, you will be encouraged to get the latest and greatest, by then
you’ll know all you need to use it wisely.

http://www.smileymicros.com/
http://sourceforge.net/projects/winavr
http://www.smileymicros.com/

Chapter 2: Quick Start Guide

19

Software

We will use three FREE software packages, the WinAVR compiler from
sourceforge.net, the AVRStudio 4 from ATMEL, and Br@y++’s Terminal.

WinAVR – Oh, Whenever…
WinAVR is a set of tools for C programming the AVR microcontroller family. A
bunch of folks have volunteered their time to write this software and give it away
as part of the free software movement (www.sourceforge.net). These folks
generously giving there time to help others is almost enough to change my cynical
opinion of humanity. You can spend thousands on C compilers for
microcontrollers and before WinAVR you had to spend several hundred even for a
crappy compiler. This software is FREE, but SourceForge has expenses so send
them some money at www.sourceforge.net/donate.

At http://sourceforge.net/projects/winavr/ you see the summary:

“WinAVR (pronounced "whenever") is a suite of executable, open source
software development tools for the ATMEL AVR series of RISC microprocessors
hosted on the Windows platform. Includes the GNU GCC compiler for C and
C++.”

Go to: http://winavr.sourceforge.net/index.html and check out their homepage.

But don’t get too distracted with all that yet, just use the tools as shown here, and
once you reach the end of this book, then you’ll have the skills to fully exploit
those web sites.

Programmers Notepad
We’ll be writing our software using the most excellent Programmers Notepad,
another FREE program available at sourceforge.net and included in the WinAVR
distribution package. Imagine what Microsoft would charge for this FREE
software. Be a good guy or gal and send them some money at
http://www.pnotepad.org.

http://www.sourceforge.net/
http://www.sourceforge.net/donate
http://sourceforge.net/projects/winavr/
http://winavr.sourceforge.net/index.html
http://www.pnotepad.org/

Chapter 2: Quick Start Guide

20

AVRStudio – FREE and darn well worth it.
AVR Studio is provided free by the good folks at ATMEL Corporation, who seem
to understand that the more help they give developers, the more they will sell their
microcontrollers. Actually, this too could cost hundreds and still be darn well
worth it, but unless you just really like Norway, don’t send them any money,
they’ll get theirs on the backend when you start buying thousands of AVRs for
your next great invention.

The AVR Studio will be used for two things: first, to download your software to
the AVR Butterfly, and second, to simulate the ATMEGA169 running your
software.

Br@y++ Terminal:
The original Quick Start Guide chapter used HyperTerminal, which is hard to
setup, clunky, and hated by so many folks on the AVRFreaks.net forum that I
contacted Br@y++ and he gave me permission to use and distribute his highly
recommended and easy to use and understand terminal package. You can get it at
http://bray.velenje.cx/avr/terminal or http://www.smileymicros.com. It is shown in
Figure 7: Bray's Terminal. The examples in the text still show the HyperTerminal,
but it shouldn’t be a problem substituting Bray’s. If you want to use
HyperTerminal, the introduction to it is in Appendix 1.

http://bray.velenje.cx/avr/terminal
http://www.smileymicros.com/

Chapter 2: Quick Start Guide

Hardware

Constructing Your Development Platform

ADC

USART

USI

PORTB
Pin 1 JTAG PORTD

Pin1 ISP

Light Sensor Joystick

+3VGNDGND +3V

PORTB
Pin 2

Figure 2: The Butterfly front

Solder the female headers to the ADC, PORTB, and PORTD lands. Note that the
square pads are pin1 and that PORTB and PORTD seem to have 10 pins, but they
don’t, pins 9 and 10 are ground and power respectively (see Figure 2).

The RS-232 Connection:
Communication with the PC requires three lines: TXD, RXD, and GND. The
TXD is the transmit line (data from the PC to the Butterfly), RXD is the receive
line (data from the microcontroller to the PC) and GND is the common ground.
Notice that there is a bit of relativity in this equation, the microcontroller’s RXD
wire is the PC’s TXD wire and vice versa. I can’t count the number of times I’ve

21

Chapter 2: Quick Start Guide

done stupid things like connecting the microcontroller’s RXD pin to the DB-9
RXD pin, because I didn’t think ‘RXD – receive - relative to what?’

The parts list has a DB-9 female solder cup RS-232 connector. Follow the
illustrations in Figure 3.

Solder cup backside pin 5 - GND

Solder cup backside pin 2 - RXD
Solder cup backside pin 3 - TXD

USART (J406) connector: pin1 RXD

USART (J406) connector: pin3 GND
USART (J406) connector: pin2 TXD

Figure 3: RS-232 connections.

NOTICE HOW THE RXD AND TXD LINES CROSS OVER – PAY
CAREFUL ATTENTION AS IT IS EASY TO GET THESE REVERSED.

Constructing the power supply:
The Butterfly comes with a CR2450 coin battery that will power the LCD for a
long time, but will be used up quickly by the RS-232 connection and our
experiments. Remove the coin battery and construct a battery pack with parts
from the JAMECO parts list (Appendix 7) using the following pictures. Be sure
and get the power, red wire, and ground, black wire, correct: as shown in Figure 4
and Figure 5.

NOTE: ALL THE ILLUSTRATIONS SHOW PORTD WITH AN 8-PIN HEADER AND THE POWER WIRES
SOLDERED IN PLACE. THE PARTS KIT SPECIFIES 10-PIN CONNECTORS FOR BOTH PORTS B AND D. USE
THE 10-PIN HEADER ON PORTD AND INSERT RATHER THAN SOLDER THE POWER WIRES.

22

Chapter 2: Quick Start Guide

23

Figure 4: Battery holder, switch, and batteries.

Figure 5: External battery connection to Butterfly

A few days after making the power supply I left it on all night, so I added an LED
(Figure 4) to the switch so that I’d know that it was on. You can solder the long
leg of an LED to the rightmost pin on the switch, where the +3v goes to the
Butterfly, and then solder a 330 resistor to the short leg and the resistor to the rivet
at the base of the battery on the right. The LED is lit when the switch is to +3V.

Test your Connection using Brays Terminal:

Hook your RS-232 cable to the Butterfly as in Figure 6. The run Bray’s Terminal,
(well, Br@y++’s to be exact – available at http://bray.velenje.cx/avr/terminal and
http://www.smileymicros.com) and configure it as in Figure 7 with the radio
buttons set to select your COM port, 19200 Baud rate, 8 Data bits, parity of none,
1 Stop bits, and no handshaking. Click the connect button. Turn on your Butterfly

Chapter 2: Quick Start Guide

24

power supply, then with the joystick button centered press it and watch the stream
of ?????? question marks that should be coming from the Butterfly. This is the
Bootloader telling you that it is alive and ready to be boot loaded, or perhaps it is
just curious as to what’s going on?

Figure 6: Butterfly hooked up to RS-232

Figure 7: Bray's Terminal

Chapter 2: Quick Start Guide

25

ck that the RS-232 cable is connected. Try again. Still no? Recheck
that you’ve got the DB-9 soldered correctly to your Butterfly. Try again. Still no?
Is it turned on? If you move the joystick upward do you get the LCD scrolling
message? Yes? Turn it off and on and press the center again. Still no? If its not
working by this point go back and meticulously retry everything you can think of,
including passing a dead chicken over the setup while chanting voodoo hymns. It
took me a while to get all this running and I supposedly know what I’m doing, so
don’t feel bad if this is a little harder than you might hope. (You get what you pay
for).

p out the Butterfly’s brains, toss them aside, and stick
t from a garage sale, so let’s do one final test on the

utterfly as it came out of the package. If all goes well, you will eventually be
able to reload the Butterfly’s original brains, but all seldom goes will, as Igor will
readily attest.

With the Butterfly hooked up to the RS-232 port and the Br@y++ Terminal
running, turn the Butterfly on and click the joystick up to get the LCD scrolling.
Move the joystick straight down three times till you see ‘Name’ then move the
joystick to the right twice till you see ‘Enter name’ then move the joystick straight
down once and you will see ‘Download name’ then push down the joystick center
for a moment until you see ‘Waiting for input’. Now write a name in the bottom
text panel of the Br@y++ Terminal (Figure 8) and hit enter (or push it gently if
you prefer). The name you entered should be scrolling across the LCD as shown
in Figure 6.

If you don’t get the string of question marks, then try the other COM ports (in
Figure 7 only COM1 and COM3 are shown for my machine, yours may be
different. Press disconnect then connect and try again. If it still doesn’t work,
carefully che

In a moment you will scoo
in some brains that Igor go
B

Use this gray
window to send

characters to the
Butterfly, not the
white one above.

Figure 8: Enter name to send to the Butterfly

Chapter 2: Quick Start Guide

Let’s Blink Some LED’s:

26

Figure 9: Blinky wiring diagram and photo of wired board

All the parts are listed in the JAMECO parts list Appendix 1. Put the LEDs in the
breadboard with the short leg on the resistor side. Use the 330-Ohm resistors to
jumper to the ground strip. You’ll need to make a bunch of jumper wires, cut 9
pie , and connect them to the
bre
PORTD (Figure 2) and subsequent pins connected sequentially. The pins are
numbered with the odd pins on the bottom of the PORTD land and the even pins

ect the ground strip to the ground pin
of PORTB as shown.

No onnect your R
you sol

ces about 4 inches long strip each end about 3/8 inch
adboard as shown in Figure 9, with the right most LED connected to pin 1 of

on the top. Cut a 6” wire and use it to conn

w c S-232 cable between the computer and the RS-232 connector
dered to the Butterfly. Your hardware should look like Figure 10.

Chapter 2: Quick Start Guide

Figure 10: Hardware setup for Blinky.

Blinking LEDs – Your First C Program

You might wonder why blinking an LED is the first project, when traditional C
programming texts start with the classic “Hello, world” program. It certainly
seems that since the Butterfly has an LCD that can show the words it would be
easy. But the reality is that controlling the LCD is much more complex than

linking an LED, so we’ll save the LCD for later when we’ve gotten a better
han

• Make a directory called Blinky for this project.
 Copy ‘…/WinAVR/Samples/makefile’ (notice that it has no extension) to

Write it in Programmers Notepad

•

b
dle on things.

•
the Blinky directory.

 Find Programmers Notepad that was installed as part of
WinAVR (you should have an icon for it on your desktop) and open it. You
will need to add a tool, which will let you use the AVR Studio simulator.

• Open the Tools menu and click on Options.

27

Chapter 2: Quick Start Guide

• In the Options window select Tools:

• Then select Add:

28

Chapter 2: Quick Start Guide

• Change the check box to look like:

29

Chapter 2: Quick Start Guide

30

C
• e, then New, then C/C++, and name it Blinky.c.

PE exactly as shown:

#include <avr/io.h>
#include <avr/delay.h>

int main (void)
{

// set PORTD for output
DDRD = 0xFF;

while(1) {

for(int i = 1; i <= 128; i = i*2)

 {
PORTD = i;
_delay_loop_2(30000);

 }

for(int i = 128; i > 1; i -= i/2)

;
op_2(30000);

• Open File and again save ‘Blinky.c’ to your Blinky directory

•
•

• lick OK.

Click Fil
• Save in Blinky directory and CAREFULLY TY

// Blinky.c

 {
PORTD = i

ay_lo_del
 }
}
return 1;

}

• NOTE: YOU MUST ADD THE EXTENSION ‘.c’ TO THE NAME
Open the file ‘makefile’ in your Blinky directory.
Change these lines:

MCU = atmega128

Output format. (can be srec, ihex, binary)
FORMAT = ihex

Chapter 2: Quick Start Guide

31

MCU = atmega169

Output format. (can be srec, ihex, binary)
FORMAT = ihex

Target file name (without extension).

• rectory.
• pen Tools and click [WinAVR] Make All to make your Blinky.hex file

inAVR] Make Extcoff to make your Blinky_coff

Download to the Butterfly with A RStudio

•

Target file name (without extension).
TARGET = main

• To:

TARGET = Blinky

Close and save changes to makefile to the Blinky di
O

• Open Tools and click [W
file.

V

 Find AVR Studio (you should have an icon for it on your
desktop) and open it.

 In the File menu Open ‘…\Blinky\Blinky.cof
• Select the AVR Simulator and the ATMEGA169 as:
•

Chapter 2: Quick Start Guide

• Select Finish
• DO NOT try to run the simulation; the delay loop will take forever to run.

We’ll use the simulator later.
• Turn the Butterfly off.
• Press and hold down the joystick button.
• Back to the AVR Studio, open the Tools menu and WHILE HOLDING

DOWN THE JOYSTICK BUTTON click the AVR Prog menu item. Then
wait until you see:

32

Chapter 2: Quick Start Guide

33

ing OK.
• WHEN YOU WANT TO DOWNLOAD A DIFFERENT HEX FILE,

ER YOU WASTE TIME SCRATCHING

 LIKE THE LAST ONE YOU DOWNLOADED. I make this

• Release the joystick button. Your finger hurts doesn’t it? Enter Blinky.hex

in the ‘Hex file’ box. Press the program button and the program should
magically flow from your PC into the AVR Butterfly Flash memory.

• AVR Prog will say: Erasing Programming Verify

DON’T FORGET TO CHANGE THE HEX FILE NAME. DON’T SAY I
DIDN’T WARN YOU AFT
YOUR HEAD OVER WHY YOUR NEW PROGRAM SEEMS TO RUN
EXACTLY
mistake a lot.

• If instead of the above window you get:

• Go back a few steps and try again. You probably left Bray’s Terminal

running so it has locked the port. h n maybe not.

Blinky Goes Live
• Turn the power supply off and then back on, the LCD will be blank, click

T e

the joystick up (maybe a couple of times) and:

Chapter 2: Quick Start Guide

• Your LEDs should be making like a Cylon with the light bouncing back
and forth. If you don’t know what a Cylon is, try Googling Battlestar
Galactica, not that I’m recommending the series, but the bad guys had
great eyes:

Figure 11: From the cover of the Battlestar Galactica comic Red Cylon.

When you compiled Blinky.c you may have suspected that a lot of stuff was going
on in the background, and you would have been right. The compiler does a lot of
things, and fortunately for us, we don’t really need to know how it does what it

34

Chapter 2: Quick Start Guide

does. We only need to know how to coax it to do what we need it to do, which in
our case is convert Blinky.c into Blinky.hex that we can download to the
Butterfly. If you raise the hood on W

35

inAVR you would see a massively complex
set of software that has been created over the years by folks involved in the open
software movement. When you get a little extra time check out
www.sourceforge.net.

When you have questions about WinAVR, and you will, check out the forums on

ks.netwww.AVRFrea , especially the gcc forum, since WinAVR uses gcc to
s since

 don’t do sufficient
rch before asking questions.

that you’ve gone to the trouble to construct the hardware, and have the

r modification you can run Blinky in the AVR Studio simulator and learn the
rogramming ideas in the next chapter without any of the

o do things the hard way, ummm… hardware way because
ur ings like LEDs, not virtual things like little boxes on

you e could have a whole slew of virtual things to
on blown Cylon robots reeking havoc on your

istake you, the
imperious leader, for an enemy, would you?

 your code will run plenty fast to simulate,
e things, such as the delay functions take too long to simulate. In Blinky

e call _delay_loop_2(30000); We don’t know yet how this function works, but
thing 30000 times. If we simulate

compile the C software. Try searching the forums before asking question
someone has probably already asked your question and received good responses.
Forum helpers tend to get annoyed with newbies who
background resea

Simulation with AVRStudio

Now
burned fingers to prove it… guess what? You didn’t need to do any of that to test
Blinky or get an introduction to C programming for microcontrollers. With a
mino
introductory C p

ardware. I decided th
o goal is to control ‘real’ th

r PC screen. Theoretically, w
trol, from LEDs to motors to full c

screen, which actually sounds kind of fun, but not nearly so much fun as having a
real Cylon robot stomping around your neighborhood scaring the noodles out of
your enemies. Fun aside, it is often more practical to simulate software before
running it in the real world. You wouldn’t want your Cylon to m

The simulator runs your program in a virtual environment that is MUCH slower
than the real microcontroller. Most of
but som
w
we can guess that we are telling it to do some

Chapter 2: Quick Start Guide

the delay, the simulated LEDs will move at geologic speeds, making glaciers
seem fast, so we remove the delay before simulation.

36

in main():

akefile in the Blinky directory

the AVRStudio Workspace window click the I/O ATmega169, then the
PORTD, you should see: (the following image shows PORTB instead of
PORTD

• Open Blinky.c in Programmers Notepad and save it to a new directory,
SimBlinky, as SimBlinky.c.

• Put comment lines in front of both of the _delay_loop_2() function calls

• // _delay_loop_2(30000);
• Open the m
• Change the target: TARGET = SimBlinky
• Save the makefile to the SimBlinky directory
• Run the Make All, then Make Extcoff.
• In the AVRStudio open the SimBlinky.coff file.
• In

, -- live with it)

• In the to bar c tton: ol lick the AutoStep bu

Chapter 2: Quick Start Guide

• The simulator will run showing the LED scan as a scan of the PORTD and
PIND items in the Workspace window:(this shows PORTB but you’ll
actually see PORTD)

• See, I told you it wasn’t as much fun as watching real LEDs blink.
• Spend some time with the AVR Studio simulator and associated help files;

you’ll find the effort well worth it in the long run.

GOOD GRIEF!
That was a ‘Quick Start’???? Well, maybe things would go quicker if you wanted
to pay a fortune for a software and hardware development system, but for FREE
software, and unbelievably cheap hardware, you’ve got to expect to do a little
more of the work yourself. Besides, you couldn’t pay for all the debugging
education I bet you got just trying to follow what I was telling you. If you think
the ‘Quick Start’ section was confusing, you should try reading all the stuff it’s
based on.

37

Chapter 3: A Brief Introduction to C – What Makes Blinky Blink?

39

akes Blinky Blink?
ok at Blinky.c to help begin understanding what

 as in

 /* and end them with */ as in:

#include <avr/delay.h>

ion we call.

 PORTD = 0xFF – counter++

Chapter 3: A Brief Introduction to C – What
M
This section takes a very brief lo
each line means. Later, these items will be covered in greater detail in context of
programs written specifically to aid in learning the C programming language as it
is used for common microcontroller applications.

Comments
You can add comments (text the compiler ignores) to you code two ways.

For a single line of comments use double back slashes
// Blinky.c

For multiline comments, begin them with

* /
Blinky.c is a really great first program for microcontrollers
it causes eight LEDs to scan back and forth like a Cylon’s eyes
*/

Include Files

#include <avr/io.h>

The ‘#include’ is a preprocessor directive that instructs the compiler to find the
file in the <> brackets and tack it on at the head of the file you are about to
compile. The io.h provides data for the port we use, and the delay.h provides the
definitions for the delay funct

Expressions, Statements, and Blocks
Expressions are combinations of variables, operators, and function calls that
produce a single value. For example:

Chapter 3: A Brief Introduction to C – What Makes Blinky Blink?

40

tatements control the program flow and consist of keywords, expressions, and
other statements. A semicolon ends a statement. For example:

 TempInCelsius = 5 * (TempInFahrenheit-32)/9;

This is a statement that could prove useful if the Butterfly’s temperature readings
are derived in Fahrenheit, but the user wants to report them in Celsius.

Blocks are compound statements grouped by open and close braces: { }. For
example:

for(int i = 1; i <= 128; i = i*2)

 {
PORTD = ~i;
_delay_loop_2(30000);

}

This groups the two inner statements to be run depending on the condition of the
‘for’ statement.

Operators
Operators are symbols that tell the compiler to do things such as set one variable
equal to another, the ‘=’ operator, as in ‘DDRB = 0xFF' or the ‘++’ operator for
adding 1, as in ‘counter++’.

Flow Control
Flow control statements dictate the order in which a series of actions are
preformed. For example: ‘for’ causes the program to repeat a block. In Blinky we
have:

for(int i = 1; i <= 128; i = i*2)
{

// Do something
}

This is an expression that sets the voltage on pins on Port D to +3v or 0v based on
the value of the variable ‘counter’ subtracted from 0xFF (a hex number - we’ll
learn about these and ports later). Afterwards the counter is incremented.

S

Chapter 3: A Brief Introduction to C – What Mak

On the first pass, the compiler evaluates the ‘for’ statement, not
to 1 which is less than

es Blinky Blink?

41

es that ‘i’ is equal
 128, so it runs the block of ‘Do something’ code. After

running the block the ‘for’ expression is reevaluated with ‘i’ now equal to the
i = i*2’ which is 2 and 2 <= 128 is true, so the block

 run again. Next loop, i = 4, and so on till i = 256, and ‘256 <=128’ is no longer
 the loop and goes to the next statement

llowing the closing bracket.

Quick now evaluated
against the 56 as the
cue to quit, the loop runs 8 times.

 to see if it is true and
 the block to run if it is, then it retests the expression, looping thru the block

out 1/8
cond.

 and the makefile is
t up so that the compiler knows were to look for it.

previous ‘i’ multiplied by 2 ‘
is
true, so the program stops running
fo

, how lues
 ‘<= 128’ is ‘1,2,4,8,16,32,64,128,256’ and since it takes the 2

 many times does this loop run? The series of ‘i’ va

The while(‘expression’) statement tests the ‘expression’
allows
each time it finds the expression true. The program skips the block and proceeds
to the next statement when the expression is false. The while(1) will run the loop
forever because ‘1’ is the definition of true (false is defined as 0).

Functions
A function encapsulates a computation. Think of them as building material for C
programming. A house might be built of studs, nails, and panels. The architect is
assured that all 2x4 studs are the same, as are each of the nails and each of the
panels, so there is no need to worry about how to make a 2x4 or a nail or a panel,
you just stick them where needed and don’t worry how they were made. In the
Blinky program, the main() function twice uses the _delay_loop_2() function. The
writer of the main() function doesn’t need to know how the
_delay_loop_2(30000) function does its job, he only needs knows what it does
and what parameters to use, in this case 30000, will cause a delay of ab
se

The _delay_loop_2() function is declared in the header delay.h
se

Encapsulation of code in functions is a key idea in C programming and helps
make chunks of code more convenient to use. And just as important, it provides a
way to make tested code reusable without having to rewrite it. The idea of
function encapsulation is so important in software engineering that the C++

Chapter 3: A Brief Introduction to C – What Makes Blinky Blink?

42

nguage was developed primarily to formalize these and related concepts and

The M
All C p a ‘ ain’ f ction code that is first run
when t s.

id)

for output

i = 1; i <= 128; i = i*2)

= ~i;
_loop_2(30000);

i = 128; i > 1; i -= i/2)

D = ~i;
ay_loop_2(30000);

la
force their use.

ain() Thing
rograms must have m un that contains the

he program begin

int main (vo

{
// Do something

}

Blinky has:

int main (void)

{

// set PORTD
DDRD= 0xFF;

while(1)

 {
for(int

 {
PORTD

ay_del
}

for(int

 {
PORT
_del

 }
}

}

Chapter 3: A Brief Introduction to C – What Makes Blinky Blink?

43

microcontroller. The line:

, of 255 here because it is easier to understand what’s

The program tests the while(1) and finding it true, proceeds to the ‘for’ statement,

ay wh t? Okay f equal to 1, which in binary is 00000001 (like
exade mal, you’ll grow to love binary). This provides +3v on the rightmost
ED, li hting he other LEDs unlit at 0v.

he fir ‘for’ loop runs eight times, each time moving the lit LED to the left, then
e -= operator subtracts i/2 from i and sets i equal to

e resu ts cau ove to the right. When it is finished the loop runs
 forever. Or at least until either the universe ends

OTE: he Bu s like crazy with each LED pass, because some
f the rt D to the LCD. It’s a bug in our design, but in the
orld o marketing it would be called a free bonus feature available exclusively to
ou for n unh if you act immediately. Will it harm the LCD?

r sure, so don’t leave Blinky running overnight.

In this function we leave C for a moment and look at things that are specific to the
AVR

 DDRD = 0xFF;

Sets the microcontroller Data Direction Register D to equal 255. This tells the
microcontroller that Port D pins, which are hooked up to our LEDs, are to be used
to output voltage states (which we use to turn the LEDs on and off). We use the

exadecimal version, 0xFFh
happening. You disagree? Well, by the time you finish this text, you’ll be using
hexadecimal numbers like a pro and understand they do make working with

icrocontrollers easier, but for now, just humor me. m

which is also true and passes to the line:

 PORTD = ~i;

Which causes the microcontroller to set the Port D pins to light up the LEDs with
the value of ~i. The ‘~’ inverts the value of i , we’ll learn more about this later.

S a , ‘i’ starts of
h ci
L g it up and leaves t

T st
it exits. In the next ‘for’ loop th
th l sing the LED to m
again… for how long? Right…
or you unplug the Butterfly.

N t tterfly LCD dance
o Po pins are also tied
w f
y a eard of low price
Probably not, but I don’t know fo

Chapter 3: A Brief Introduction to C – What Makes Blinky Blink?

44

hat’s enough for a quickie introduction. We skimmed over a lot that you’ll see in T
detail later. You now know just enough to be dangerous and I hope the learning
process hasn’t caused your forehead to do too much damage too your keyboard.

Chapter 4: C Types, Operators, and Expressions

45

een on a shirt at a Robothon event:

 this doesn’t make sense to you now, it will in a minute.

ies. Later mechanical computers, with brass gears and cams,
ake the slaughter cheaper, quicker, and easier. Then one day a
you could do all this computing even easier if you used

y logic computer entered the world and
now slaughter is so cheap, quick and easy to compute that anybody can do it.

skimming the topic a bit (har!) but a full explanation would begin

he AVR and many other microcontrollers physically handle data in 8-bit units
called bytes, a data type that can have 256 states, 0 thru 255. This is shown in the

llowing sequence of states, (leaving out 9 thru 247, see Appendix 5 to see them
all, and be sure to take a magnifying glass):

Chapter 4: C Types, Operators, and
Expressions
Data Types and Sizes

S

There are exactly 10 types of people in the world.
Those who understand binary numbers and those who don’t.

If

Bits
The first computers were people with quill pens who spent their lives calculating
tables of things like cannonball trajectories to help soldiers more accurately
slaughter their enem
were developed to m
genius figured that
switches. Switches can be off or on, and the fundamental datum is the ‘bit’ with
exactly two ‘binary’, states. We variously refer to these states as ‘0 and 1’ or ‘on
and off’ or ‘true and false’. It’s the latter that allows us to use bits to automate
Boolean logic and thus the modern binar

Maybe this is
with the first sentence of Genesis and only hit its stride about the time Albert
Turing offed himself as his unjust reward for saving the free world, and while
fascinating, it won’t get us blinking LEDs any quicker, so Let’s move on.

Each of our LEDs is connected to a microcontroller pin that can have two voltage
states: ground or +3v, which can be manipulated as a data bit.

Bytes
T

fo

Chapter 4: C Types, Operators, and Expressions

46

 1111000 = 248
00000001 = 1 1111001 = 249

111010 = 250
1111011 = 251

00000110 = 6 1111110 = 254
 1111111 = 255

ere random, we’d just see the
aotically. Using binary numbers where the lit LED is

00100000 = 0x20 = 32

 microcontroller applications, we will often be dealing with the states of byte-
sized p case

 00000000 = 0

00000010 = 2 1
00000011 = 3 (9 thru 247)
00000100 = 4 1111100 = 252
00000101 = 5 1111101 = 253

00000111 = 7
00001000 = 8

Look at our Cylon eye and notice that we have 8 LEDs with one lit at a time
scrolling back and forth. What you are seeing is 8 of the 256 possible states being
presented in a sequence that fools us into thinking we are seeing a back and forth
scrolling motion. If the presentation sequence w
light blinking on and off ch
represented by 1 shown next to the hexadecimal and decimal equivalent, what we
are seeing is:

00000001 = 0x01 = 1
00000010 = 0x02 = 2
00000100 = 0x04 = 4
00001000 = 0x08 = 8
00010000 = 0x10 = 16
00100000 = 0x20 = 32
01000000 = 0x40 = 64
10000000 = 0x80 = 128
01000000 = 0x40 = 64

00010000 = 0x10 = 16
00001000 = 0x08 = 8
00000100 = 0x04 = 4
00000010 = 0x02 = 2
00000001 = 0x01 = 1

In
orts, like Port D. A port is a place where ships come and go, or in the

Chapter 4: C Types, Operators, and Expressions

47

of a mi ocontroller it is a place where outside voltages (0v or 3v) can be read or

t? And I bet you get the joke at the beginning of
is section.

ystem used in
icrocontrollers. It has a base of 16, that is 16 states per digit:

, 8, 9, A, B, C, D, E, and F.

nce we u th e 10 b n digits, fingers if you
unt the th finger, ount wi lp to imagine an alien with
fingers, yet: 4 h ith th , a

xadecima is pr d by byte representation of the
cimal nu s 0x he dec equivalents of the hex

bers ar

 00 = 0x
 = 0x
 2 = 0010 = 0x2

0101 = 0x5
 0x6

 9 = 1001 = 0x9
 0 = 0xA

 11 = 1011= 0xB
 00 = 0xC
 13 = 1101 = 0xD
 14 = 1110 = 0xE
 15 = 1111 = 0xF

cr
set.

We use binary and hexadecimal numbers for ports because it is cumbersome and
non-intuitive to think of port data as decimal numbers, Quick, what will 66 look
like on our LEDs? Quick, what will 01000010 look like on our LEDs? Since
01000010 = 66, you see my poin
th

The hexadecimal system is another commonly seen number s
m

0, 1, 2, 3, 4, 5, 6, 7

Si se numbers to e bas ecause we have te
co umb as a to c th. It might he
16 or better ands w ree fingers and on thumb on each. In C
he l number ecede 0x. The hex
de mber 129 i 81. T imal and binary
num e:

 0 = 00 0
 1 = 0001 1

 3 = 0011 = 0x3
 4 = 0100 = 0x4
 5 =
 6 = 0110 =
 7 = 0111 = 0x7
 8 = 1000 = 0x8

 10 = 101

 12 = 11

Chapter 4: C Types, Operators, and Expressions

48

c for new ex s to make the mistake of saying,
, is mistake

e we ountin ng
untin wi th r.

hen you count like a com
mputer h lien h ou and the

last would be 15 (0xF if it was speaking hex instead of dec). Try to keep this in
ind because it will bite you later.

Experienced microcontroller programmers memorize the binary equivalent of hex
or instance, given 0xA9, what would

e LEDs (or the voltage states of an 8-bit register) look like? If you memorize the

r, ask the same question in decimal,
1 like on a luck, on doing that in your head.

ok at Ap ee e byte s d binary.
lly, all bite ar

ar

 name o t for c t
a character SCII character set ppendix 4 – ASCII Table). Originally,

e were II ch s use to transmit and
eive data te Figur wrote C,
nding ne ho Teletype

ine. C y (the hompson),
letypes were light years ahead of switches
presenting each bit of data. Teletypes send and receive characters so a lot of C,

specially the standard library, is character oriented. The number of bits in a char
achine dependent, but in all machines I’ve encountered including the AVR, a

char is an 8-bit byte which can have 256 bit states. The computer uses this byte of
data as representing a signed value from –128 to + 127.

The ASCII code was extended to include characters for 128 to 255 primarily to do
weird European characters, math symbols, and character graphics on early PCs.

It is very

ell there are 16 hex integers, so 0xF
ommon users of h number

‘W the last one, is 16.’ We make th
omputer use you’ll becaus

 co
 think of c g beginni

 is
 with 1, but for most c

see
W

g beginning th 0. 0
puter your first digit (left thum

e first integer and 15 is the 16th intege
b?) is 0 not 1. If a

co ad those a ands to c nt on, the first thumb would be 0

m

digits and find hex numbers very useful. F
th
table, you come up with 0xA = 1010 and 0x9 = 1001, so the LEDs (voltage states)
will look like: 10101001. As pointed out earlie
what will 69 look the LEDs nd good
Lo pendix 5 to s all th tates in decimal, hexadecimal, an
Fina jokes equating byte to e prohibited.

ch
The f this data type i

 in the A
s shor haracter, and is typically used to represen

(A
ther 127 ASC aracter d by Teletype machines
rec . You will no that in e 1, you see Dennis Ritchie, who
sta xt to Ken T mpson, who wrote UNIX, working on a
mach lunky as the were Teletype, not Ritchie and T
Te entering data by individual
re
e
is m

Chapter 4: C Types, Operators, and Expressions

49

unsigned
 is used in the definition of a char variable: ‘unsigned

 255. Many C compilers will have ‘byte’ or ‘Byte’
’. The ‘byte’ keyword is not part of C, but it is

en nce in microcon e se a lot of numbers, but
t a lot of ‘

n AVR mi
2768 to + cla ith ‘u value from

 65535.

 long an it
verybody else makes that dumb joke at this point, so why be different?

is stored in bytes of RAM, Random
dresse es that provide an alias

for the ing e’ll gory details in the ‘Variables
Externa

Const
onstants are data that cannot be changed by the program and are usually stored

e wherever
eeded, but that will get old quick, so we alias the value with a name. We usually
o this tart of the software module, which adds the
dvantage that if we ever want to change the constant we can do it once in the

convention, constant
ames are all caps. For example we might want to use pi in calculation (pi

at data type) so we define as follows:

If the modifier unsigned
char’, the value is from 0 to
defined as equaling ‘unsigned char
very conv ient, si trollers w usually u
no char’acters.

int
O crocontrollers int declares a 16 bit data variable as having values from
–3 32767. A variable de red w nsigned int’ will have a
0 to

The d short of
E
You can declare variables as ‘short int’ and ‘long int’. For C the size is machine
dependent, but on many systems a short int is the same as an int, 16 bits, while a
long int is 32 bits.

Variable Names
 processing The changeable data you are

Access , at sp a Memory ecific d s. Variables are nam
 address be used. W look at the
l, Static, and Register’ section of.

ants
C
in ROM, Read Only Memory. We could just type in the constant valu
n
d in a header file or at the s
a
definition instead of at each occurrence in the code. By
n
containts a decimal so we use the flo

#define PI 3.1415926

Chapter 4: C Types, Operators, and Expressions

50

e can then use PI anywhere in our software and the compiler will automatically

erence = 0.0;
us = 0.0;

iePanRadius^2);

ecla
ent that declares to the complier how your words are

d char counter = 0’ you are telling the
mpiler that when it encounters the word ‘counter’ to consider it as data stored at
me specific location with the alias name ‘counter’ that can have values from 0

lue of 0.

 algebra often enough that you need to
think they should. The compiler
 than what you wanted it to do.

sion you can run into when you use the ‘=’
ssignm operator:

 = y;
lay_loop_2(30000);

. The second calls the
 about:

_loop_2(30000); //BAD STATEMENT

elay_loop_2(30000) function. The
’ bec use the condition, x=y, is always true, so the delay

VR compiler will think something is strange and issue
is warning:

round assignment used as truth value

W
substitute the numerical value for it:

 float pieCircumf
 float piePanRadi

 pieCircumference = PI * (p

D rations
A declaration is a text statem

 be used. When you declare ‘unsigneto
co
so
to 255, but in this case initially has a va

Arithmetic Operators
Operators seem like ordinary arithmetic or algebra symbols, and they mostly are.

ut they are different from arithmetic orB
pay attention when operations don’t act like you

ight just be doing what you told it to do, ratherm
An example of the kind of confu

ent operator and the ‘==’ ‘is equal to’a

 x
 if(x==y) _de

The first statement assigns x to the value of y
_delay_loop_2(30000) function if x is equal to y. What

 if(x=y) _delay

 then call the _dThis will set x equal to y, and
if omes meaningless beca‘

will always run. The WinA
th

Warning: suggest parentheses a

Chapter 4: C Types, Operators, and Expressions

51

hich will scroll by so fast you won’t see it, so you’ll assume the compile was
OT) this warning was? Most complier warnings are

en m ag this error with a warning. It is a
 will feel really dumb after an hour of

only to find a lousy missing ‘=’

may seem strange at this point, but they are
xplained fully in later sections. Then they’ll seem really strange.

perat Defined

W
good. Notice how clear (N
ev ore cryptic. Not all compilers will fl
very easy mistake to make, and you
debugging, looking for something obscure,
character. I do this all the time.

Note: Some of these operators
e

Table 1: Arithmetic Operators
O or Name Example
* Multiplication x*y Multiply x times y
/ Division x/y Divide x by y
% Modulo x%y Provide the remainder of x divided by y
+ Addition x+y Add x and y
- Subtraction x-y Subtract y from x
++ Increment x++ Increment x after using it
-- Decrement --x Decrement x before using it
- Negation -x Multiply x by –1
+ Unary Plus +x Show x is positive (not really needed)

Table 2: Data Access and Size Operators
 Name Example Defined Operator

[] Array element x[6] Seventh element of array x
. Member selection PORTD.2 Bit 2 of Port D
-> pStruct->x Member x of the structure pointed to

by pStruct
Member selection

* Indirection *p Contents of memory located at
address p

& Address of &x Address of the variable x

Chapter 4: C Types, Operators, and Expressions

52

able 3: Miscellaneous Operators
Defined

T
Operator Name Example
() Function wait(10) call wait with an argument of 10
(ty Type cast (double)x pe) x converted to a double
?: Conditional x?y:z If x is not 0 evaluate y, otherwise evaluate

z
, Sequential x++,y++ Increment x first, then increment y

evaluation

R onal and Logical Operatoelati rs

ble 4: Logical and Relational Operators

Ta
Operator Name Example Defined
> Greater than x>y 1 if x is greater than y, otherwise 0
>= Greater than

or equal to
x>=y 1 if x is greater than or equal to y,

otherwise 0
< Less than x<y 1 if x is less than y, otherwise 0
<= Less than or x<

equal to
=y 1 if x is less than or equal to y

0
, otherwise

== Equal to x==y 1 if x equals y, otherwise 0
!= Not equal to x!=y 1 if x is not equal to y, otherwise 0
! Logical NOT !x 1 if x is 0, otherwise 0
&& Logical AND x&&y 0 if either x or y is 0, otherwise 1
|| Logical OR x||y 0 if both x and y are 0, otherwise 1

Chapter 4: C Types, Operators, and Expressions

53

Bitwise Operators
ble 5Ta : Bitwise Operators

Operator Name Example Defined
~ Bitwise complement ~x Changes 1 bits to 0 and 0 bits to 1

NOT
& Bitwise AND x&y Bitwise AND of x and y
| Bitwise OR x|y Bitwise OR of x and y
^ Bitwise exclusive OR x^y Bitwise XOR of x and y
<< Left shift x<<2 Bits in x shifted left 2 bit

positions
>> Right shift x>>3 Bits in x shifted right 3 bit

positions

Bitwise operators are critically important in microcontroller software. They allow

s to do many things in C that can be directly and efficiently translated into
microcontroller machine operations. Keep in mind that these operators work on
bits but are similar enough to the logical operators that you will get confused.
Let’s look at the truth tables for &, |, and ^:

 AND OR XOR
0 & 0 = 0 0 | 0 = 0 0 ^ 0 = 0
0 & 1 = 0 0 | 1 = 1 0 ^ 1 = 1

ns on it:

e can starting with 0):

s happening Let’s look at these in binary:

 myByte =

u

1 & 0 = 0 1 | 0 = 1 1 ^ 0 = 1
1 & 1 = 1 1 | 1 = 1 1 ^ 1 = 0

Let’s create a variable, myByte and do some bitwise operatio

 unsigned char myByte = 0;

W set bit 3 (numbering from the right

 myByte = myByte | 0x08;

To see what’

 00000000 = 0x00

Chapter 4: C Types, Operators, and Expressions

54

 0x08 = 00001000 = 0x08

r maybe myByte = 0x55:

 myByte x55
 0x08 08

 OR 5D

This all shows bit of myByte is affected by the OR operation,
since it is the only bit equal to 1 in 0x08.

e can set bit 3 with:

myByte = 00000000 = 0x00

 OR = 00001000 = 0x08

Suppose myByte = 0xFF:

 myByte = 11111111 = 0xFF
 0x08 = 00001000 = 0x00

 OR = 11111111 = 0xFF

O

 = 01010101 = 0
 = 00001000 = 0x

0x = 01011101 =

 that only the 3rd

Now let’s do the same thing with the & operator:

 unsigned char myByte = 0;

W

 myByte = myByte & 0x08;

To see what’s happening Let’s look at these in binary:

 0x08 = 00001000 = 0x08

 AND = 00000000

Suppose myByte = 0xFF:

 myByte = 11111111 = 0xFF
 0x08 = 00001000 = 0x08

Chapter 4: C Types, Operators, and Expressions

55

r maybe myByte = 0x55:

yByte = 0xAA:

he above cases we are only dealing with a single bit, but we might be

. Let’s set bit 6,
gardl regardless of their
esent as they were when

hich does the following:

 AND = 00001000

O

 myByte = 01010101 = 0x55
 0x08 = 00001000 = 0x08

 AND = 00000000 = 0x00

And maybe m

 myByte = 10101011 = 0xAA
 0x08 = 00001000 = 0x08

 AND = 00001000 = 0x08

n each of tI

interested in any or all of the bits. One of the most important features of using
masks with bitwise operators is that it allows us to set or clear a specific bit or set
of bits in a byte without knowing or affecting the bits we aren’t interested in. For
xample, suppose we are only interested in bits 0, 2, and 6e

re ess of its present value, then clear bits 0 and 2, also
r value and, here’s the trick, leave bits 1, 2, 4, 5, and 7p

we began. Let’s have myByte starting equal to the secret to life the universe and
everything, which according to Douglas Adams is 42, but remember that the start
value doesn’t matter to us since we are going to force 3 bits to values regardless
of the start value.

NOTE:

myByte = myByte | 0x08;
is the same as

 myByte |= 0x08;
which we will use from no on.

At the beginning myByte is equal to 42 = 0x2B = 00101011. We set bit 6 with:

 myByte |= 0x40;

w

Chapter 4: C Types, Operators, and Expressions

56

nd 2:

 m

which does the following:

myByte = 01101011 = 0x6B
 0x40 = 11111010 = 0xFA
 ------- ------- ------

 AND = 01101010 = 0x6A

where the ‘&’ and

ter than or equal to ‘a’

1. So if the
ppercase version
subtracting as in

ll, it is more efficient for the machine to take the inverse of the

00
~0x20 = 11011111

 myByte = 00101011 = 0x2B
 0x40 = 01000000 = 0x40

 AND = 01101011 = 0x6B

Next we want to clear bits 0 a

 yByte &= 0xFA;

-- --

So in summary we set bits with ‘|’ and clear bits with ‘&’.

The Butterfly Software has a clever snippet in LCD_driver.c
‘~ ators are used to convert a lowercase letter to a capital: ’ oper

 // c is a letter

= 'a') // Convert to upper case if (c >
 c &= ~0x20; // if necessary

is st mentTh ate first checks to see if the character c is grea
and uses the convenient fact that in ASCII the letters are sequential with the

ng at 0x41 and the lowercase beginning at 0x6capitals beginni
character is >= 0x61 then it is lowercase and we can derive the u

x20. So why do we use ‘c &= ~0x20’ instead of by subtracting 0
 -= 0x20’? We‘c

minuend and then AND it with the subtrahend (this by the way, is the first time
since grammar school that I’ve actually used minuend and subtrahend, I’m
amazed that these terms actually stuck. Maybe it was the teachers steely glare and
the dangerous looking pointer she held.) Let’s look at it shall we?

 0x20 = 001000

Chapter 4: C Types, Operators, and Expressions

57

While using &= and/or |= is acceptable, the Butterfly code generally does this a

ake the code a little clearer,
first. When we create masks to set or clear bits,

ed PD0 and we
h ighth bit simple, but it gets hairy when

 give com es to all the bits in the dozens of registers. For instance
e Time TCC imer e

owing b age 90 ATMEGA

‘a’ = 0x61 = 01100001
 ~0x20 = 11011111

 AND = 01000001 = 0x41 = ‘A’

This is a lot harder for us than ordinary subtraction, but much easier for the
machine.

little differently, not to make your life harder, but to m
though it won’t seem that way at

or instance the we will nam
can guess t

e the bits so f
at the e

first bit in port D is nam
D7. That’s is named P

we plicated nam
in th r0 register:

its named (p
R0A, T /Counter Control Register A we have th

foll 169 databook):

 Bit 7 = FOC0A – Force Output Compare A

rm Generation Mode 0

as:

 Bit 6 = WGM00 – Wavefo
 Bit 5 = COM0A1 – Compare Match Output Mode 1
 Bit 4 = COM0A0 – Compare Match Output Mode 0
 Bit 3 = WGM01 – Waveform Generation Mode 1
 Bit 2 = CS02 – Clock Select Bit 2
 Bit 1 = CS01 – Clock Select Bit 1
 Bit 0 = CS00 – Clock Select Bit 0

Bits 0, 1, and 2 the Clock Select Bits are defined

Chapter 4: C Types, Operators, and Expressions

Figure 12: from page 92 of the ATMega169 data book

Fast PWM mode and CLK/256 prescaler
TCCR0A |= (1<<WGM01)|(1<<WGM00)|(4<<CS00);

We use the left shift o number before the operand to the
numeric position in th the number following the operand. In
the case of (1<<WGM01) we shift a 1 to the left by WGM01 bit positions, and we
see from iom169.h:

#define FOC0A 7
#defin
#defin
#defin
#defin
#defin
#defin 1

Let’s initialize the timer with:

// Set

perator ’<<’ to shif
ed by

t the
e byte specifi

/* TCCR0A */

e WGM00 6
e COM0A1 5
e COM0A0 4

3 e WGM01
2 e CS02

 CS01 e
#define CS00 0

WGM01 = 3, so (1<<WGM01) is the same as (1<<3) and means to shift 0000001
three places left to 00001000. Now look at The TCCR0A register and notice
where the WGM01 bit is located. Ah ha! Like I said, we have a way of dealing
with a bit by a name.

58

Chapter 4: C Types, Operators, and Expressions

59

 or 1 so how the heck do we set a bit to 4?. Well, or
ourse we don’t. The CS00 = 0, so we are left shifting the number 4 by 0 meaning

ny shifting of the 4, we are just ORing it with the other two
values:

 TCCR0A |= (1<<WGM01)|(1<<WGM00)|(4<<CS00);

hat the lower three bytes of the TCC0RA register can be
considered a three bit select the clock. The number 4

ulti-bit fields.

er’ (this will be explained
r section) to set bits 6, 3, and 2 (x4C)
g the other R it like before we wou

 |= 0x4C;

xxxx n’t know, or need to
100110

----------- ------
 = x1xx11x = our bits are set the rest

blem is what does it mean to setup the timer wit en you
A |= 0x4C; you don’t know what it is doing and you have to derive

d look in the d

1<<WG 1)|(1<<WGM00)|(4<<CS00);

he (1<<WGM01)|(1<<WGM00)|(4<<CS00) is the same as 0x4C except that we
an read that we are setting both the Waveform Generation bits and we are setting

But wait, wouldn’t that mean that (4<<CS00) means we are setting the CS00 bit
to 4? But a bit can only be 0
c
we aren’t doing a

Since 4 = 00000100, we will be setting the CS02 bit, not the CS00 bit. So why
didn’t we say (1<<CS02) instead of (4<<CS00)? And the answer is ‘because’.
Actually the answer is t

 field for a number used to
selects the clock/256 prescaler (see the Clock Select Bit table in Figure 12 above).
Now we can see that (5<<CS00) would mean set the clock to clk/1024 and so
forth. We will often think in terms of m

Our goal was to ‘Set Fast PWM mode, CLK/256 prescal
later in the time

ectin
so we want

e O
01001100 = 0

without aff bits. If w ld:

 TCC0RA

Which is:

 TCC0RA = xxx x = we do o.
 0x4C = 0 0
 ----- --
 OR x are not
changed.

oThe only pr h 0x4C? Wh
see TCC0R
the binary an ata book to figure it out. But using:

 TCCR0A |= (

M0

T
c

Chapter 4: C Types, Operators, and Expressions

60

ay still have to use the data book to look at the
enerator and Clock Select tables, but it is still clearer isn’t it?

r chance at knowing what is going on?

 TCC0RA |= 0x4C;
Versus:
 TCCR0A |= (1<<WGM01)|(1<<WGM00)|(4<<CS00);

Heck, I don’t know, but it is how the guys in Norway do it so we’ll give them the
benefit of the doubt and do it the Norway way and be able to steal all that cool
Butterfly code.

Testing Bits
Now we have our timer setup, but suppose there is a function that needs to know
how the Waveform Generator is set so that it can choose among several
alternative actions? We can test a bit by using the AND operator, but not assigning
any values. For example:

Waveform Generator Modes:

WGM01 WGM00 Mode

the clock prescaler to 4, we m
Waveform g

Which gives you a bette

0 0 Normal
0 1 PWM, phase correct
1 0 CTC
1 1 Fast PWM

 if(!(TCC0RA & WGM01) && !(TCC0RA & WGM00))
 {
 // do this only if in the normal mode
 }
 else if(!(TCC0RA & WGM01) && (TCC0RA & WGM00))
 {
 // do this only if in the PWM, phase correct mode

}

C mode
 }

 else if((TCC0RA & WGM01) && !(TCC0RA & WGM00))
 {
 // do this only if in the CT

Chapter 4: C Types, Operators, and Expressions

61

else if((TCC0RA & WGM01) && (TCC0RA & WGM00))

 bitwise ANDs and a logical

ssignment Operators and Expressions
able 6: Assignment Operators

O

 {
 // do this only if in the Fast PWM mode
 }

The (TCC0RA & WGM01) test will be 1, true, only if the WGM01 bit is 1,
likewise for the (TCC0RA & WGM00) statement. The !(TCC0RA & WGM01),
adding the ‘!’ or NOT to the statement means that it is true only if the innards of
the () are false. The ‘if’ statement will only be true if both the first and (logical
AND = &&) the second are true. So we’ve used two
AND in this statement.

AND I hope it is clear. It isn’t, so get out the pencil and paper computer and work
through it till it is. Seriously, when I was editing and reread this section I had a
‘good grief’ moment. But this is critical since we will be doing lots of clearing
and setting control register bits. And it is as simple as I can make it, so do
carefully walk through the example, pencil and paper in hand and work each
example.

A
T

perator Name Example Defined
= Assignment x=y Put the value of y into x
+=
-=

Compound
assignment

x += y This provides a short cut way to write and
expressio

*=
/=
%=
<<=

>=

n, the example:
x += y; is the same as

 >

&=
= ^

|=

x = x + y;

Chapter 4: C Types, Operators, and Expressions

62

 external conditions. For
xample, if the tem ° F, turn the fan on, if it is under 100° F,

d write this as:

 Fan(OFF);

r you could use the C conditional operator ?: (
able 3

 temp > 150 ? Fan(ON) : Fan(OFF);

he op rm: expresson1 ? expression2 : expression3, and follows

ut you’ll see this expression a

hen a sequence of operators such as:

The co er of calculation based on operator precedence (Table
7). But y not be what you intended. Calculate the
value o . D ons quentially as
listed you get:

10 / 2 – 20 * 4

x = 40

Conditional Expressions
You will frequently need to make decisions based on
e perature is above 150
turn the fan off. You coul

 if(temp > 150)
 Fan(ON);
 else

O

T) as below:

T eration has the fo
the rule that if expression1 is true (non-zero value) then use expression2,
otherwise use expression3. This operator seems a little gee-wiz-impress-your-
riends and not as clear as the if-else expression, bf

lot, so get used to it.

recedence and Order of Evaluation P
W statement has a

x = 50 + 10 / 2 – 20 * 4;

iler follows an ordmp
 what the compiler does, ma
f id you get 40? If you performed the calculatx i se

x = 50 +
x = 60 / 2 – 20 * 4
= 30 – 20 * 4 x

x = 10 * 4

Chapter 4: C Types, Operators, and Expressions

63

So the rong, according to C it is –25. The compiler does the

urus will memorize the precedence and associatively table and actually

served insult. Don’t be
lever be clear. Clever programming is difficult to read and understand. If the

clever programmer gets run over by a truck (hopefully) his code will be inherited
by some poor guy who will have to figure things out. DO NOT

answer is 40, right? W
division and multiplication first, then the addition and subtraction:

x = 50 + 10 / 2 – 20 * 4
x = 50 + 10 / 2 – 80
x = 50 + 5 – 80
x = 55 – 80
x = -25

Some C g
write statements like x = 50 + 10 / 2 – 20 * 4. Such clever programmers are
dangerous and should be avoided when possible. The Germans have a word for
clever: kluge, and in programming ‘kluge’ is a well-de
c

 memorize the
Table of Operator Precedence and Associatively in C. DO use ’(‘ and ‘)’ to
make your program clear!

Which is clearer:

x = 50 + 10 / 2 – 20 * 4;
or:

x = 50 + (10 / 2) – (20 * 4);

The second adds nothing for the compiler, but tells the reader what was intended.
But what if you really meant to have the operations performed in the order listed?
Then you would write:

x = ((((50 + 10) / 2) – 20) * 4);

Which would make x = 40. The parentheses can get mighty confusing, but not
nearly as confusing as their absence.

Table 7: Operator Precedence and Associativity in C
Operator Type Operators Associativity
Expression () [] . -> Left to right
Unary - + ~ ! * & ++ -- sizeof(type) Right to left
Multiplicative * / % Left to right
Additive + - Left to right

Chapter 4: C Types, Operators, and Expressions

64

Shift << >> Left to right
Relational (inequality) < <= > >= Left to right
Relational (equality) == != Left to right
Bitwise AND & Left to right
Bitwise XOR ^ Left to right
Bitwise OR | Left to right
Logical AND && Left to right
Logical OR || Left to right
Conditional ?: Right to left
Assignment = *= /= %= += -= <<= >>= &= |=

^=
Right to left

Sequential evaluation , Left to right

Chapter 4: C Types, Operators, and Expressions

65

Projec

Port In t and

ts

pu Output

Figure 13 ATMega169 Block Diagram

We ski so that we could get some LEDs blinking.
Let’s n tailed look at I/O ports.

mmed over a lot
take a more de

 in Chapter 2
ow

Chapter 4: C Types, Operators, and Expressions

66

 few as 6 I/O pins on
e ATTINY11 ($0.54) to as many as 54 on the ATMEGA169 ($8.60), the

microcontroller used on the Butterfly. Most of these pins are organized into ports,
collections of pins that are setup and used with port specific access and control
registers. Many of the pins have more than one possible function: they can be

sed to t digital logic data or they might be used for detecting
xternal interrupts or as input for clocks or for analog to digital conversions and
o on. In this section we’ll be looking at digital I/O.

he ATMEGA169 on the Butterfly has six 8-bit and one 4-bit general purpose I/O
ports shown in Figure 13 ATMega169 Block Diagram (copied from the
ATMega169 data book page 3, Figure 2.) Looks mighty complex doesn’t it? Well
this is a simplified block diagram of a circuit that is vastly more complex. When
you see a photomicrograph of these chips they resemble aerial photos of a vast
ancient city with streets laid out in a grid surrounded by a wall. The ports are the
gates to the city where the ancient electrons riding their very tiny ancient donkeys
enter and leave the city. I’d continue in this vein but then I’d probably win a prize
in the awful metaphor competition so I’ll stop.

When this book was written, Digi-Key listed AVRs with as
th

u input or outpu
e
s

T

ATmega169 Silicon Die Curtesty of Christopher Tarnovsky from Flylogic.net

Chapter 4: C Types, Operat

Each port has three associated I/O memory locations, that act as guards
etermining who shall pass (guess I won’t stop)

ors, and Expressions

67

:

nly

rection Register must be set to
ll the micro whether a pin will be used for input or output. To use a pin for

input, set the a se it as output set it to 1. For example,
to use the uppe and the lower 4 bits as output, set the

its to 0000111

DDRD = 0x0F;

e the PINB register to read the switches from port B
nd write the value to port D using the PORTD register.

 that all the pins are used as inputs:

ext we set the DDRD register so that all the pins are used as outputs:

en w ts the switch data from port B using PINB

grammers Notepad and write the following
a new directory PortIO.

d

1. Data Direction Register - DDRx – Read/Write
2. Data Register – PORTx – Read/Write
3. Port Input Pins – PINx – Read O

For example port A has: PORTA, DDRA, and PINA.

When used for general purpose I/O the port Data Di
te

ssociated DDRx bit to 0; to u
RTD as inputsr 4 bits of PO

1, which, as we’ve seen, in hex is 0x0F: b

In this project we will set port B to input data from switches and port D to output
+3V to drive LEDs. We us
a

First we set the DDRB register so

DDRB = 0x00.

N

DDRD = 0xFF.

h e write an infinite loop that geT
and equates it to PORTD that will light the LEDs.

pen a new C/C++ file in ProO
program. Save it as PortIO.c in

// PortIO.c
#include <avr/io.h>

Chapter 4: C Types, Operators, and Expressions

68

int main (void)

 and save it to the PortIO directory then

llow m.

s, remember to turn the

{
 // Init port pins
 DDRB = 0x00; // set port B for input
 DDRD = 0xFF; // set port D for output

 while(1)
 {
 PORTD = PINB;
 }
}

Open the makefile in the Blinky directory
hange: c

TARGET = PortIO.
o the Blinky example to write, compile, and download this little prograF

Remember to turn the Butterfly off and back on, then hold down the center
joystick button before and while clicking on the ‘AVR prog…’ menu item in
AVRStudio. Also remember to browse to the PortIO.hex file in AVRStudio (I
often forget to change the hex file and end up programming the Butterfly with an
arlier hex file). And finally after the code downloade

Butterfly off and back on then click the joystick to the upper position to start the
program.

If everything goes as planned, the LEDs will display the state of the switches as
shown below. I told you we’d have some lame examples.

Chapter 4: C Types, Operators, and Expressions

69

Figure 14: Port I/O switch input and LED output

Chapter 4: C Types, Operators, and Expressions

70

Cylon Eye Speed and Polarity Control

se to control the
polari y polarity I ean that we will

 LED which will be off, or all the
LEDs off and the sweep LED on. We will control the polarity with the switch

 this ample we will use the ~ bitwise operator to invert the LEDs on port D.

Open PortIO.c in Personal Notepad and save it as CylonEyes.c in a new directory
CylonEyes. Make the following changes to the main() function

// Cyl
#include <av
#inclu

int main (vo
{
 ize the scroll delay_count
 unsigned long delay_count = 10000;

 a variable for the speed increase
unsigned long increase = 0;

ase = PINB;

polarity
127)

e -= 127;
ity = 1;

In this example we will use port B to input data that we will u

ty. B mCylon eye movement rate and the LED
set either all the LEDs on except the sweep

connected to the port B pin 7, leaving the lower pins to allow us to set the speed
increase factor from 0 to 127.

In ex

onEyes.c
 r/io.h>

de <avr/delay.h>

id)

// declare and initial

// declare

 // declare a variable for the polarity
 unsigned char polarity = 0;

 // Init port pins
 DDRB = 0x00; // set port B for input
 DDRD = 0xFF; // set port D for output

 while(1)
 {
 // read the switches
 incre

 // set the
 if(increase >
 {

eas incr
 polar

Chapter 4: C Types, Operators, and Expressions

71

= 0;

delay count
 = 5000 + (increase * 500);

hose eyes
 128; i = i*2)

larity) PORTD = ~i;
PORTD = i;
y_loop_2(delay_count);

28; i > 1; i -= i/2)

PORTD = ~i;
RTD = i;

 _delay_loop_2(delay_count);

ory and change TARGET = CylonEyes then
, load, and play.

 }
 else polarity

 // set the
 delay_count

 // scroll t
 for(int i = 1; i <=
 {
 if(po
 else
 _dela
 }

 for(int i = 1
 {
 if(polarity)
 else PO

 }
 }
}

Open the makefile in the Blinky direct
save it to the CylonEyes directory. Compile

Figure 15: Bit 7 high Figure 16: Bit 7 low

Chapter 4: C Types, Operators, and Expressions

72

Chapter 5: C Control Flow

73

k open
e kimono and take a good hard look.

e
e followed by a semicolon:

PORTD = ~i;

tes the statement.

Compound st oup of statements or
declarations in ock iler to

00 wait count was too long so I changed it to 2200:

 while(QuarterSecondCount < 2200)//17600);
 Quarte

ut I wanted to leave the 17600 in case I ever needed it again, so I commented it

QuarterSecondCount = 0;

Chapter 5: C Control Flow

We specify the order in which computations are performed with control

atements. We’ve already peeked at some of these concepts, now Let’s jerst
th

Statements and Blocks
RTD = ~i or _delay_loop_2(30000) or i -= 128 becomExpressions such as PO

statements when they ar

_delay_loop_2(30000);
i -= 128;

he semicolon terminaT

ate
 bl

ments are made by enclosing a gr
delimited by braces ‘{‘ and ‘}’. This causes the comp

handle the block as a unit.

Tale of a bug:
I wrote the following statement:

 while(QuarterSecondCount < 17600);
 QuarterSecondCount = 0;

Then decided that the 176

rSecondCount = 0;

B
out. Do you see a problem here?

Well, what I meant to say was:

 while(QuarterSecondCount < 2200);

Chapter 5: C Control Flow

74

rSecondCount < 2200)

s that while QuarterSecondCount is less than 2200, set
uarterSecondCount to 0. So each time the interrupt incremented

nt of time locating, you
less or both.

rtuna ly, I am my o n bos so I’ d and careless

 has a non-zero result (it is true), then we do statement 1, if the

lated

Which is two statements, the first waits while an interrupt increments
QuarterSecondCount in the background, and once that is finished the
QuarterSecondCount is set to zero. What the compiler saw was:

 while(Quarte
 QuarterSecondCount = 0;

because the compiler doesn’t see the comments – the \\17600;. See the problem
yet?

Well how about he equivalent statement:

 while(QuarterSecondCount < 2200) QuarterSecondCount = 0;

The compiler also doesn’t know about the line break, all it sees is the last
statement, which say
Q
QuarterSecondCount, this statement set it back to zero.

This is the kind of bug, that after spending X amou
carefully hide it from your boss lest she think you are stupid or care
Fo te w s, ve learned to live with my stupi
employee. (I fired myself once, but that just didn’t work out.)

If-Else and Else-If

W e s th lse statement: e can make d cision using e if-e

 if (expression)

nt1 stateme
 else

statement2

 the expressionIf
e e) we do statement 2. We can make a list of

 decisions using else if:
xpression has a 0 result (it is fals

re

Chapter 5: C Control Flow

75

 this be evaluated sequentially looking for the first
non-zero (true) expression and if they all equal 0 (false) we do statement 4. You
can om nt to do nothing if all the expressions
are 0 (f xample of this construction later when we write an
exampl rogr ng the joystick interrupts:

 KEY_PLUS)PORTD= ~0x01;
put == KEY_NEXT)PORTD = ~0x02;

 else if(input == KEY_PREV)PORTD = ~0x04;

ht and LED, this statement lights
e LED). If the first line is true then the rest of the statements are skipped. If the

ons that are either true or false. If we
ant to make decisions using expressions that can have any numeric result we use

if (expression1)
 statement1
 else if (expression2)
 statement2
 else if (expression3)
 statement3

 else
 statement4

In case each expression will

it the final else statement if you wa
se an ealse). We will u

e p am for usi

 if(input
 else if(in

==

 else if(input == KEY_MINUS)PORTD = ~0x08;
 else if(input == KEY_ENTER)PORTD = ~0x10;

Which may be read as: if the input is equal to KEY_PLUS then set port D equal
to the inverse of a byte equal to 1 (a byte of 1 is binary 00000001, the inverse is
11111110 and since we output a 0 to a pin to lig
th
first line isn’t true, then each line is evaluated sequentially until a true expression
is found or it drops out the bottom and does nothing.

Switch

The ‘if else’ construction limits us to expressi
w
the switch statement that selects an expression with results equal to a specified
constant.

Chapter 5: C Control Flow

76

:
statements

 case constant expression31 : statements
 default: ments

We can redo the if else if block used in the joystick interrupt example using a
switch

01;

:
x02;

x04;

eak;

case KEY_ENTER :
PORTD = ~0x10;

ou can let cases fall through, which can be handy in circumstances such as
evaluat cter is a capital or
lower c want the same response for a range of integers:

 case :

switch (expression) {
 case constant expression1 statements

 case constant expression2 :

state
}

statement as follows:
switch(input){
 case KEY_PLUS :

PORTD = ~0x
break:

 case KEY_NEXT
PORTD = ~0
break;

case KEY_PREV :
PORTD = ~0
break;

case KEY_MINUS :
PORTD = ~0x08;
br

break;
default:

}

So if the ‘input’ == KEY_NEXT, then PORTD = ~0x01. The ‘break’ statement
causes an immediate exit from the switch block. If you want to continue
evaluating cases against the input, leave out the break and the subsequent
statements will be looked at.

Y

ing character input where you don’t care if the chara
ase letter, or perhaps you

switch(input){
‘a’

 case ‘A’ :
 DoaA();
 break;
 case ‘b’ :

Chapter 5: C Control Flow

77

 case ‘B’ :
 DobB();

switch(input){

23();
 break;

default:
 DoDefault();

Switch nd a frequent source of head boinking bugs
(one where you boink your head for being dumb enough to leave out a break

 break;
 case ‘0’ :
 case ‘1’ :
 case ‘2’ :
 case ‘3’ :
 Gofer0123();
 break;
 case ‘4’ :
 case ‘5’ :
 case ‘6’ :
 case ‘7’ :
 Gofer4567();

 break;
 default:

 DoDefault();
 break;

}

This can be compacted as:

 case ‘a’ : case ‘A’ :
 DoaA();
 break;

 case ‘b’ : case ‘B’ :
 DobB();
 break;
 case ‘0’ : case ‘1’ : case ‘2’ : case ‘3’ :
 Gofer01

 case ‘4’ : case ‘5’ : case ‘6’ : case ‘7’ :
 Gofer4567();
 break;

 break;

}

 statements are error prone a

Chapter 5: C Control Flow

78

statement). Th
K&R) ember to use it when you add a
stateme

Loops – While, For and Do-while

 // Do stuff while expression is true

The co

 28)

oop_ (3000);

This do p in our first example program:

{
PORTD = i;

 }

e break after default: isn’t even necessary, but is recommended (by
as a good practice to help you rem
nt to the end of the list.

We’ve been using while for a while (har!).

while(expression)
{

}

While will repeat the associated statement or block as long as the expression is
true.

de fragment:

 xint i;
i <= 1 while(

{
; PORTD = i

elay_l 2 0_d
i = i*2;

}

es tly the same thing exac as the for loo

for(int i = 1; i <= 128; i = i*2)

_delay_loop_2(30000);
}

The for loop is constructed as follows:

for(expresson1; expression2; expresson3)

 {
 // Do stuff

Chapter 5: C Control Flow

79

 and expression3 are assignments or function calls and
xpression2 is a test of some sort. The expressions can be any expression
cluding the empty expression which is nothing followed by a semicolon:

for(;;)

 {
 // Do stuff forever
 }

This is an alternative way to do the while(1) eternal loop.

You can usually accomplish the same goal using either while or for statements.
Generally it is clearer to use for loops with a simple initialization and
incrementing such as:

for(int i = 1; i <= 128; i = i*2)
{

// Do stuff while I less than or equal 128
}

But its really a matter of personal preference though most C dudes will want to
smack you around a little if you don’t do it their way.

While and for loops test for the termination condition before running the block,
‘do while’ runs the block first insuring that the block will be run at least once:

 do

{
// Do stuff at least once

}
while(expression);

Break and Continue

A break statement throws you out of the loop immediately and without regard for
the terminating expression. It only throws you out of the innermost loop in nested
loops.

Usually expression1
e
in

Chapter 5: C Control Flow

A continue statement causes the loop to skip the following statements in the block
and start the loop over again. You won’t see this often, but it can come in handy
for amazingly complex decision loops. Gurus use it a lot for job security.

Goto and Labels
There are those who would burn you at the stake for using ‘goto’. I’m not one of
those, but I won’t throw water on you when some other C dude sets you on fire
for this heresy. The goto statement is probably the laziest, most unnecessary,
confusing, and potentially harmful thing you can stick in your code. It allows you
to jump all over the place without regard to logic or common sense, creating the
infamous ‘spaghetti code’. But I have used it on occasion to escape a deeply
nested loop as a quick fix for a bug when I didn’t have time to rewrite the code
like it should have been written in the first place. But I have never shown anyone
such code; I have my pride you know. Anyway, the goto statement causes a jump
to a label as follows:

 while(expression){
 for(expression;expression;expression){
 do{
 if(expression){
 switch(expression){
 case expression:
 if(expression) expression;
 else goto GETMEOUTOFHERE!;
 break;
 case expression:
 expression;
 break;
 default:
 break;
 }
 }
 }while(expression)
 }
 }

 GETMEOUTOFHERE!:
 // Put more code here, or better yet, rewrite the nested loops above.

80

Chapter 5: C Control Flow

A few practical examples: strlen, atoi, itoa, reverse
In a serial communications project that we’ll get to later, we will want to convert
numbers into charac

81

ter strings to use in communicating with the PC. There are
ard Library, stdlib.h, that do everything we need; however,
rite them ourselves (with some help from K&R).

;
 return i;

erminal character.

characters a backslash and a following

 the t we will use several escape sequences, for
exampl cter that tells the Teletype machine to return

d to

functions in the Stand
to help us learn Let’s w

//NOTE: stolen from K&R p. 39 strlen function

int strLen(char s[])
{
 int i;

 i = 0;
 while(s[i] != '\0')
 ++i

}

In strlen, we accept a pointer to a string (we’ll talk about pointers later). The
string is an array of characters with a terminal character ‘\0’ (we’ll talk about
arrays later). The while statement evaluates each character, incrementing the
index, i, until the terminal character is found. The return value is the number of
haracters, not including the tc

In C the single and double quotes have specific meaning: when you see ‘x’ the
compiler sees the ASCII number for the single character x; when you see “x” the
compiler sees a string with the character x followed by the string termination
haracter ‘\0’. Whenever you see two c

character like ‘\0’, the C compiler sees this as a single nonprintable character
called an ‘escape sequence’.

In serial communications projec

 ‘\r’ is a non-printable charae
the print head to the left of the platen and roll the paper one line. What? You
aren’t using a Teletype machine? Maybe not, but you are using a direct ancestor
of one, and C was written on one, so thou shouldest get thyself use
anachronisms.

Chapter 5: C Control Flow

82

We define non-printable characters using escape sequences and I guess this is just
about a

k at the next function, take out you paper and pencil computer and

ought and see what you come up with. I’m serious now,
t or

 9: ASCII Table (in appendixes) and note
e nd 4 are sequential integer numerals, 0x31, 0x32,

, and 0x34.

//NOTE: stolen from K&R p. 43 atoi function
)

i] <= '9'; ++i)

s good a place as any to show them all:

Table 8: Escape Sequences

\a alert (bell)
\b backspace
\f formfeed
\n newline
\r carriage return
\t horizontal tab
\v vertical tab
\\ backslash
\? question mark
\’ single quote
\” double quote
\000 octal number
\xhh hexadecimal number
\0 null

efore you looB

come up with an algorithm for converting an ASCII character string of numerals
n integer, for example convert the string of char data types: “1234” to the int into a

1234. Give this some th
do i the rest of the ink in the book will fade away and you’ll have an expensive

k at Tabledrawing pad. Need a hint? Loo
 characters for 1, 2, 3, athat th

x330

int atoi(char s[]
{
 int i, n;

 n = 0;
 for(i = 0; s[i] >= '0' && s[
 n = 10 * n + (s[i] - '0');
 return n;

Chapter 5: C Control Flow

83

I to integer, function converts a string of ASCII characters

 not equal to or between ‘0’ and ‘9’. This gets us out of the loop, but not out of

a robust function, we would have some kind of error reporting
 so that code calling atoi could know that it sent a bad string and so the

alling function could build in some way to recover. We’ll get into all that later

he conversion algorithm relies on the convenient fact that the ASCII characters
n ASCII, ‘1’ is

ter, we get (s[i] – ‘0’) = 1, the integer.
 has a value of 0x30 from the character

’ which has a value of 0x31, leaving us with the number 1. Voila: ASCII to
teger.

 the 10*n = 0 and the character is
e integer. For each subsequent pass, the n has a

ultiplied by 10 providing the 10’s, 100’s, and so forth.

e concerned if yours wasn’t as simple and elegant as this one. Mine
art thinking like a computer. Then your brain turns to
.

e characters in an array. How would
u do is? T puter, then look at the reverse

NOTE unction

}

T
re

he atoi, ASCI
presenting the integers 0 thru 9 into an integer number equivalent to the string.

If you didn’t figure this one out yourself then use your paper and pencil computer
to run the function with char s[] equaling ‘1,2,3,4,\0’ to see how it works. Note the
condition in the ‘for’ statement will cause the loop to bail if one of the characters
is
trouble. In
mechanism
c
and be careful not to make mistakes now. (Famous last words)

T
for integers are represented by a sequence of numbers. ‘0’ is 0x30 i
0x31, and so on. So if s[i] = ‘1’, the charac

hat is, we subtract the character ‘0’ whichT
‘1
in

e start with n = 0, so the first time thruW
converted to the 1’s position in th
value so it gets m

You were asked to think about this algorithm before looking at the atoi function.
Don’t b
wasn’t. It takes a while to st

le avoid yousilicon and peop

Now think about the problem of reversing th
yo th ry it on the pencil and paper com
function.

// : stolen from K&R p. 62 reverse f
 in place// reverse: reverse a string s

verse(char s[]) void re
{
 int c, i, j;

Chapter 5: C Control Flow

84

 for (i = 0, j = strLen(s)-1; i < j; i++, j--){

raightforward. Put the first char from the array in a box, then put
the last character in the array in the position of the first character, then take the

he array. Mover your index in

//NOTE: stolen from K&R p. 64 itoa function
char s[])

gn = n) < 0) // record sign
 // make n positive

se order
0'; // get next digit

while ((n /= 10) > 0); // delete it
 if (sign < 0)

ring

rself. Don’t be tempted to succumb to boredom and blow

 c = s[i];
s[i] = s[j];

 s[j] = c;
}

 }

This is pretty st

stored character and put it in the last position in t
one position on both ends and repeat.

Now try to develop an algorithm for converting an integer to an ASCII string.

ine worked, but wasn’t even close in the quality of the actual function in K&R. M
Oh, well.

void itoa(int n,
{
 int i, sign;

 if ((si
 n = -n;
 i = 0;
 do { // generate digits in rever
 s[i++] = n % 10 + '
 }

 s[i++] = '-';
i] = '\0'; // add null terminator for st s[

 reverse(s);
}

In my attempt at this, I never thought to do it backwards then reverse the string.
First store the integer in the ‘sign’ variable and we get the sign of the integer by
using the ‘if’ statement to see if the integer is less than 0, if so, we multiple it by –
1 to make it positive. Then we use do while, because we want to have at least one
digit. Now get out your paper and pencil computer and run the number 1234
through the do while loop, since no amount of explaining will be as effective as
running the numbers you

Chapter 5: C Control Flow

85

u must be able to understand this at this point in the book. And it will this off, yo
be on the test.

Chapter 6: C Functions and Program Structures

87

m

u are probably wondering why you bought the Butterfly and all that

nd define some things. First a ‘reuse’
f what was said earlier:

ing and provides the possibility of
 as important, it provides a way

rogrammer to mess with it
so important in software

+ language was developed primarily to formalize these

e calls to the function.
A function definition is the function text as:

void sendChar(char myData)

Chapter 6: C Functions and Progra
Structures
Function Basics

About now yo
cool hardware. Where are the projects? Let’s blow something up! Patience
grasshopper, we’ll have a project at the end of this chapter and many more later. It
will be worth it, I promise.

We’ve been using functions enough that by now you probably have a good
intuitive feel for them, but Let’s be formal a
o

Encapsulation is a key idea in C programm
making chunks of code convenient to use. And just
to make tested code reusable while not allowing the p

are and chance breaking something. These ideas
engineering that the C+
concepts and force their use.

One of the main functions of functions (har!) is to break computations up into
logical chunks and separate them to help clarify the code. If you find yourself
writing a function that seems to be doing two separable things, try separating it
into two functions.

A function must be declared before it is defined somewhere, usually in a header
file or before the main() function. For example:

void sendChar(char) ;

Which tells the compiler that the sendChar() function takes a char as an argument
and doesn’t return anything when finished. The compiler can use this information
to make sure you are using it correctly when you mak

Chapter 6: C Functions and Program Structures

88

the argument now not only has the type ‘char’ but a specific variable

In the calling function, ‘myByte’ is an alias for the address
n this case a char. The called function takes that char and puts in

this case, with the name ‘myData’.
e but are not stored in the same place.
’ not the actual ‘myByte’ itself. If the

hange is not reflected in the calling
ising number of bugs

t’s make a function adder that adds
o numbers.

e getboinked();

 unsigned char add2 = 1;

adder(add1,add2,results);

{
 // Do stuff with the variable ‘data’
}

Note that
‘myData’. It doesn’t matter what you name the argument in the calling function,
as long as the type matches, so:

 sendChar(myByte);

This is just fine, since the sendchar function will use the data in ‘myByte’ as the
data in ‘myData’ in the function definition. An important consideration is that the
data in ‘myByte’ is copied to sendchar(myByte), but the variable ‘myByte’ is not
sent. Think about this.
of some data, i
memory at another address aliased, in
‘myByte’ and ‘myData’ have the same valu
The function only sees a copy of ‘myByte
function chages the ‘myData’ variable, that c
functions ‘myByte’ variable. This is a source of a surpr
among novice C programmers. To clarify le
tw

 void adder(unsigned char a1, unsigned char a2, unsigned char r)
 {
 r = a1 + a2;

 if(r == 2) getrewarded();
 els
 }

Let’s call it in main()

int main()
 {
 unsigned char add1 = 1;

 unsigned char results = 0;

Chapter 6: C Functions and Program Structures

89

 else getboinked();

ain() function.

n unsigned char:

nsigned char ad1, unsigned char a1)

r = a1 + a2;

nd in ain w r so it gets set to the data returned by

nt main()

add1,add2);

 if(results == 2) getrewardd();

 }

If you think 1 + 1 = 2 prepare to get boinked. You’ll getrewarded() in adder() and
getboinked() in main(). In the adder function, r = 2, but this doesn’t change the

esults’ in the parameter list in the function call to adder in the m‘r

Returns

Ouch! Boinking hurts, so Let’s make adder work right, we change the return type
from void to char and declare r as a

 char adder(u
 {
 unsigned char r;

 if(r == 2) getrewarded();

 else getboinked();

 return r;
 }

A m e set ‘results’ equal to adde
adder:

i
 {

 unsigned char add1 = 1;
 unsigned char add2 = 1;
 unsigned char results = 0;

 results = adder(

 if(results == 2) getrewarded();
 else getboinked();
 }

Now we get two rewards. If we want to skip the reward we could write adder:

Chapter 6: C Functions and Program Structures

90

nd w ave a seless function. If we want to add 1 and 1, we
st add hem.

ariab s E r

 written:

igned char, unsigned char);
unsigned char results = 0;

 adder(add1,add2);

) getrewarded();
();

d a har ad1, unsigned char a1)

 a2;

t
changed it to 3. Then when the interrupt finishes and we

ntly occupy memory, while defining
esults emory when adder is called, and release the

memor

 char adder(unsigned char ad1, unsigned char a1)
 {

 return a1 + a2;
}

 uA e h concise and totally
ju t

V le xternal, Static, and Registe
Another way to do the adder() thing would be to use and external variable
(global). These are variables defined outside any function, usually in a header or
before main() and are available for any function to use. We could have

 void adder(uns

 int main()
 {
 unsigned char add1 = 1;
 unsigned char add2 = 1;

 if(results == 2
 else getboinked
 }

 voi dder(unsigned c
 {
 results = a1 +

}

hich uld W wo work fine. Unless of course an interrupt triggered right after we se
results in adder() and
look at results in main() we get boinked again. This is a good reason to avoid
external variables. You never know where they’ve been or what kind of nasty stuff
they might track in. Also they permane
‘r ’ in adder would only use m

hen y w finished.

Chapter 6: C Functions and Program Structures

91

he int i declared

ions in it from other files, but you
annot use an external variable declared in another file.

There is a difference in the definition and the declaration of external variables. If
you use the extern keyword as in:

extern int tramp;

you have declared that tramp will be an int, but you have not defined it. To use
tramp you must define it in each file that will use it. Something like:

 int tramp = NULL;

This must appear in a source file that uses it. For example:

In file1:
 extern double gadabout;
 extern char harlot;

In file2:
 double gadabout = 0;

char harlot = ‘?’;

In this case changes to gadabout and harlot in file1 will also appear in file2 and
visa versa. Maybe I’m being harsh calling them tramp, gadabout, and harlot, but
externs are even more prone to being who-knows-where and doing who-knows-
what than regular external variables so they are bug prone.

Scope
Variable names have scope, meaning the locations where they are recognized, that
determine how they can be used.

Variable names declared in a function are recognized only in that particular
unction. For example, you can have multiple functions with tf

local to that function and they won’t interfere with each other. Likewise, a
variable declared within a block remains local to that block.

External variables have scope from the point they are declared to the end of the
ext file. If you compile a file, you can call functt

c

Chapter 6: C Functions and Program Structures

92

An example bug comes when you create an extern:

 extern int upcount;

onths,

plementation

equal to some value, external and static
e initialized to zero; automatic and register variables

d to random garbage. It’s good practice to always

 file1 and declare it in files 1 and 2 and put your code aside for a few min
then get busy on file3 and decide that you need an external variable to do some up
counting, so you declare it int upcount = 0; forgetting that it has already been
declared as an extern in file1 which you have stuck in a library and no longer look
at. Then you start getting weird bugs where the seemingly impossible event
occurs that your upcount is getting changed unpredictably. This kind of error is so
common that it was one of the reasons C++ was invented. Use externs if
absolutely necessary (sometimes nothing else will do) but use them with extreme
caution.

Headers
Header files are a convenient place to stick all the stuff that you put before the
main() function. They are files with a suffix of .h and are declared as:

 #include <LEDblinker.h>
 #include “PCcomm.h”

f the declaration uses <filename> the compiler looks in an imI

defined location, usually an ‘include’ directory. If it uses “filename” the compiler
looks in the same directory that the source program was located. The choice will
depend on how you’ve decided to organize your development file system.

Blocks

Initialization
a variable If you don’t explicitly set

variables are guaranteed to b
are guaranteed to be initialize
initialize a variable.

External and static variables must be initialized with a constant expression, but
you can use other variables in the initialization of automatic and register
variables:

Chapter 6: C Functions and Program Structures

93

int b = x + y + z – 12;
// do stuff

en a function calls itself. I’ve never called myself. I’m
en have to deal with the philosophical
s no problems with functions calling

themselves, other than the psychiatric problems it tends to cause programmers
when confronted with a recursive function and the task of figuring out what’s
going on. C Gurus love recursive functions.

 unc(double data)

 double ss;
 e stuff
 recursivefunc(mess);

 very problematic in
 limited in RAM memory. Each time you
 stack using RAM that isn’t released until

ch function you call within a function puts more data on
 more RAM. Recursive functions look like a good way
ably fill the stack leading to the often-fatal condition known

lly starts at the end of RAM and builds
 start at the beginning of RAM and build

e stack may push it down far enough overwrite
mediately or only occasionally, like at the

ever written
or the same

 int dosomething(int x, int y, int z)
 {
 int a = 0;

 }

Recursion
Recursion happens wh
afraid that I might answer the phone and th
or psychiatric implications. However, C ha

 void recursivef
 {

me
 // Do som

 // Do more stuff
 }

You’ll find recursion used quite appropriately in some standard library functions
and in many data sorting applications. But recursion can be
microcontrollers where we are usually
all a function some data is put on thec

the function returns. Ea
the stack locking up

ickly and unpredictqu
as blowing your stack. Your stack usua
downward. Your variables usuall

 on th
y

upward. So putting too much
variables. That may kill your code im
worse possible moment. Maybe I’m just not smart enough, but I’ve n

d I don’t plan on it. Fa recursive function for a microcontroller an
reason, I also try not to nest function calls too deep.

Chapter 6: C Functions and Program Structures

94

 e compiler as a separate first step.

ld be a good time
e them to prevent name conflicts. We saw in the discussion

orget that you have declared a variable name as
able using a name in another file causing

ou consider it fun to stay up all night to find a
 likelihood of such is to keep a single header file

gram. For instance, if we decide to build a Killer
 write different C sources files for the various

s.c

ylonEnemyDiscriminator.c

.c to substititute ‘theProgrammer’
er learning that bugs yield extreme

 tells the preprocessor to substitute a specified arbitrary
uence of characters anywhere it sees a specific token:

efine token arb1 arb2 arb3

ich causes the complier to substitute ‘arb1 arb2 arb2’ everywhere it sees

Preprocessor
runs before thThe preprocessor

#include

e hav ow wouW e already discussed a little about #include but n
to mention how to us
on ‘extern’ that it is possible to f

ine a varian extern in one file then def
potential fun results, that is if y

 thestupid bug. One way to lessen
for all the C source files in a pro
Cylon Robot, we might wan

mponents we need:
t to

co

 CylonEye
 CylonLegs.c
 CylonArms.c
 CylonBlaster.c
 C
 and so forth…

er file CylonKillerRobot.h, include it in each of the project We could create a head
files and use it for all of our variable and function declarations. By putting all the

ood of creating a name conflict that definitions in this file we lessen the likelih
lonEnemyDiscriminatorcauses the code in Cy

for ‘theEnemy’ leading to the programm
boinking.

#define
The #define directive
seq

 #d

Wh
‘token’.

Chapter 6: C Functions and Program Structures

95

e possible source of problems occurs when you reuse a token. You might write:

efine Up 0

d come back a month later, when your header file has 500 lines and forget that
d Up and add:

1

 and you won’t get any warnings, other than
me mysterious bugs that you’ll blame on the

see what you’ve done and apply a well-
serve

tion
 a complex, or frequently

ine the larger of two

) : (y))

7;
t c = 0;

(a, b);

ompiler sees.

bstituted
a function is located in only one place

e big difference from a microcontroller
at nothing is pushed on the stack when a macro is used, unlike

On

 #d

An
you have already define

 #define Up

The preprocessor uses the last #define

s one. But you probably will get sothi
hardware until much later you finally

d boink to your own head. de

Macro Substit

e can se #de
u

W u fine to make a simple token that replaces
used expression. For example we may want to determ
variables:

 #define larger(x, y) ((x)>(y) ? (x

hich we wou use aW ld s:

 int a=

nt b =
9;

 i
in

c = larger

The preprocessor replaces the last statement with:

 c = ((a)>(b) ? (a) : (b));

Which is what the c

The expression larger(a, b) looks like a function but isn’t. A macro is su
in the code anywhere that it is used, wh

ch time it is used. Th
ile

and is called ea
spective is thper

Chapter 6: C Functions and Program Structures

96

nctions, which use extra RAM. Also macros create in-line code that can be
rocessor overhead). And finally, macros don’t
es:

double da = 12;
 double db = 14;

tion, the parameters require a data type such as int or double,
 there is casting, but that’s another topic).

on

amilies that differ only in a few features, pinouts,
ons. You can write C code for the entire family if

hings that differ. Let’s say that SuprMic16 uses pins
ansmit and receive, while SuprMic8 uses pins 6 and 14,
 and 2. We put the following in our SuprMic.h file:

define RXD 13
cX == 8
 TXD 6

define RXD 14
uprMicX = 4

or SuprMicX TXD and RXD pins."

rMic8 in our Killer Cylon Robot project we should put the

fu
faster than function calls (no p
require formally declared data typ

 double dc = 7;
 double dd = 0;

 dd = larger((db-da), dc);

If larger() was a func
but couldn’t use both (okay,

Conditional Inclusi

Often microcontrollers come in f

ster locatimemory size, and regi
you substitute alias for the t
12 and 13 for USART tr
nd SuprMic4 uses pins 1a

 #if SuprMicX == 16

define TXD 12
 #
 #elif SuprMi

define

 #elif S
 # define TXD 1
 # define RXD 2

#else
 # error “No definition f
 #endif

If re using the we a Sup
following in our CylonKillerRobot.h file:

#ifndef SuprMicX
define SuprMicX = 8
include <SuprMic.h>

Chapter 6: C Functions and Program Structures

97

the #define
s only the first time it sees the

 attaching the
t uses CylonKillerRobot.h

n ifndef
rocessor will only use that header’s data

r data in more than once you may get a lot
ultiple declarations.

 #endif

processor will use The ifndef means ‘if not defined’ so that the pre
SuprMicX = 8 and #include <SuprMic

This prevents the preprocessor from
.h> line

#ifndef SuprMicX line.
contents of SuprMic.h in each file tha

As a ma f ard practice, always begin a header file with a #
statement and a

tter o stand
 #define so that the prep
. If you put the headeonce in a project

of compiler errors about m

Chapter 6: C Functions and Program Structures

98

ollers are buried deep in some device where they run in merry
lation from the rest of the world. Their programs are burned into them and

t there are many instances when we might want to communicate
, which is fine

hanging the
g the PC’s RS232 serial

icrocontroller through its
ransmitter, USART, peripheral.

 on the transmission speed in data bits
ber of bits per data unit, Data Bits, the parity of the

r of stop bits, Stop Bits, and Flow Control. (Refer to
m section of Chapter 2 for the required

acy from even before
 stuff for
, get Jan

elson’s Serial Port Complete (www.lvr.com

Projects

here? Communicating with a PC Is anybody out t

Most microcontr
iso
never change. Bu
with a microcontroller. The Butterfly uses a joystick and an LCD
for its built-in applications. For anything more complex, like c
microcontroller software, nothing beats usin
communications port to communicate with the m

r TUniversal Synchronous Asynchronous Receive
The microcontroller and the PC must agree
per second, Baud rate, the num
data, Parity, the numbe
Constructing Your Development Syste
settings) All this information is somewhat arcane and is leg
Teletype machines. Fortunately the USART takes care of most of this
yo

x
u, so you don’t need to understand it. If you are really interested

A).

 the PC and receive
In this section we will develop a generic command

 later programs. In this project we will
a demonstration that let’s the PC send a command name

. The Butterfly will respond with text.

ell beyond our C
rd about it yet. We

r knowledge. You should have no

d commands and data fromWhat we need is a method to sen

responses from the Butterfly.
interpreter skeleton that we will reuse in
use this skeleton to build

d a number to the Butterflyan

We will put this software in four files:
 PC_Comm.h
 PC_Comm.c

Demonstrator.h
 Demonstrator.C

The PC_Comm files have many things in them that are w
training at this point, so just copy them and don’t think too ha
will revisit each function later as we increase ou

Chapter 6: C Functions and Program Structures

99

onstrator files. If you do, review. In
e changes to Demonstrator.h and

rogrammer’s Notepad open a new

;

r.h.

mm version

ibrate the oscillator:

// say hello
sendString("\rPC_Comm.c ready to communicate.\r");

specifically

trouble understanding anything in the Dem
future projects we will only need to mak
Demonstrator.c.

Demonstrator

Create a new PC Comm directory and in P
C/C++ file and write:

h CommDemo version // Demonstrator.

void initializer(void);

void parseInput(char *)

void Comm1(char *);
void Comm2(char *);
id Comm3(char *); vo

void Comm4(char *);

void responder(char *, char);

toSave this file as Demonstra

mer’s Notepad open a new C/C++ file and write: In Program

rator.c PC Co// Demonst

#include "PC_Comm.h"

void initializer()
{
 // Cal
 OSCCAL_calibration();

// Initialize the USART
 USARTinit();

 // identify yourself

sendString("\rYou are talking to the PC_Comm demo.\r");

}

void parseInput(char s[])

Chapter 6: C Functions and Program Structures

100

&& (s[2] == 'm') && (s[3] == 'm'))
// parse the fifth character

 Comm1(s);

);
k;

 case 'd':

 default:
sent: '");

'd':
) && (s[2] == 'm') && (s[3] == 'o') && (s[4] == '?'))

g to the PC_Comm demo.\r");

 case 'h':
[1] == 'e') && (s[2] == 'l') && (s[3] == 'l') && (s[4] == 'o'))

String("\rYou sent: '");
 sendChar(s[0]);
sendString("' - I don't understand.\r");
break;

1(char s[])

onder(s,s[4]);

 responder(s,s[4]);

{
acter // parse first char

switch (s[0])
 {
 case 'c':
 if((s[1] == 'o')

switch (s[4])
 {
 case 'a':

 break;

 case 'b':
 Comm2(s);
 break;

': case 'c
3(s Comm

 brea

 Comm4(s);

 break;

 sendString("\rYou
 sendChar(s[0]);

 sendString("' - I don't understand.\r");
 }
 break;
 case
 if((s[1] == 'e'
 sendString("You are talkin

 break;

 if((s

 sendString("Hello yourself\r");
 break;
 default:
 send

 }
 s[0] = '\0';
}

void Comm
{
 resp
}

oid Comm2(char s[]) v
{

Chapter 6: C Functions and Program Structures

101

)

s[4]);

onder(char s[], char c)

r i = 5, j = 0;

{

 else
 {

 sendString("Error - Comm");
 sendChar(c);
 sendString(" received a non integer: ");
 sendChar(s[i]);
 sendChar('\r');
 }
 }

 sComm[j] = '\0';

 if(j>11)
 {
 sendString("Error - Comm");
 sendChar(c);
 sendString(" number too large\r");
 sendChar('\r');
 }
 else
 {
 sendString("\rThank you for sending the number: ");
 sendString(sComm);
 sendChar('\r');
 }
}

}

void Comm3(char s[]
{
 responder(s,s[4]);
}

void Comm4(char s[])
{
 responder(s,
}

void resp
{
 char sComm[11];
 unsigned cha

while((s[i] != '\0') && (j <= 11))

 if((s[i] >= '0') && (s[i] <= '9'))
 {
 sComm[j++] = s[i++];
 }

Chapter 6: C Functions and Program Structures

Save this file as Demonstrator.c.

PC_Comm

The next two programs, PC_Comm.h and PC_Comm.c can be copied from the
CD to the CommDemo directory, or if you want a preview of coming attractions,
you can open a new C/C++ file in Programmer’s Notepad and write:

// PC_Comm.h
#include <avr/io.h>
#include <avr/interrupt.h>
#include <avr/delay.h>

#include <stdlib.h>

#include "Demonstrator.h"

void OSCCAL_calibration(void) ;
void USARTinit(void);
char isCharAvailable(void);
char receiveChar(void);
void sendChar(char) ;
void sendString(char *);

Save this file as PC_Comm.h.

In Programmer’s Notepad open a new C/C++ file and write:

// PC_Comm.c

#include "PC_Comm.h"

int main(void)
{
 char string[64];
 unsigned char count = 0;

 // run the initialization routine
 initializer();

 //Begin forever chatting with the PC
 for(;;)
 {
 // Check to see if a character is waiting
 if(isCharAvailable() == 1)
 {
 // If a new character is received, get it
 string[count++] = receiveChar();

 // receive a packet up to 64 bytes long

102

Chapter 6: C Functions and Program Structures

 if(string[count-1] == '\n')// HyperTerminal string ends wi
 {
 string[count-2] = '\0'; //convert to a string

103

th \r\n

 parseInput(string);
 string[0] = '\0';

 count = 0;

 }

ar isCharAvailable()

the RX0 bit of the USART Status and Control Register
ate a char has been received?
SR0A & (0x80))) return 1;

else return 0;

 UDR0 = data;

&0x40));

 }
 else if(count > 64)
 {
 count = 0;
 string[0] = '\0';
 sendString("Error - received > 64 characters");

 }

 }
 return 0;
}

ch
{
 // Does
 // indic
 if ((UC

}

char receiveChar()
{
 // Return the char in the UDR0 register
 return UDR0;
}

void sendChar(char data)
{
 int i = 0;

 // To send data with the USART put the data in the USART data register

 // Check to see if the global interrupts are enabled
 if(SREG & 0x80)
 {
 // Wait until the byte is sent or we count out
 while (!(UCSR0A&0x40) && (i<10000))
 {
 i++;
 }
 }
 else // Wait until the byte is sent
 while(!(UCSR0A

 // Clear the TXCflag
 UCSR0A=UCSR0A|0x40;
}

Chapter 6: C Functions and Program Structures

104

 if(s[i] == '\0') break; // quit on string terminator

 // set Clock Prescaler Change Enable
 // set prescaler = 4, Inter RC 8Mhz / 4 = 2Mhz

oid OSCCAL_calibration(void)

R1B = (1<<CS10); // start timer1 with no prescaling

 TCCR2A = (1<<CS20); // start timer2 with no prescaling

 //wait for TCN2UB and TCR2UB to be cleared

void sendString(char s[])
{
 int i = 0;

 while(i < 64) // don't get stuck if it is a bad string
 {

 sendChar(s[i++]);
 }
}

void USARTinit()
{
 // Increase the oscillator to 2 Mhz for the 19200 baudrate:
 CLKPR = (1<<CLKPCE);

 CLKPR = (1<<CLKPS1);

 // Set the USART baudrate registers for 19200
 UBRR0H = 0;//(unsigned char)(baudrate>>8);
 UBRR0L = 12;//(unsigned char)baudrate;

 // Enable 2x speed change
 UCSR0A = (1<<U2X0);

 // Enable receiver and transmitter
 UCSR0B = (1<<RXEN0)|(1<<TXEN0)|(0<<RXCIE0)|(0<<UDRIE0);

 // Set the USART to asynchronous at 8 bits no parity and 1 stop bit
 UCSR0C = (0<<UMSEL0)|(0<<UPM00)|(0<<USBS0)|(3<<UCSZ00)|(0<<UCPOL0);
}

//Calibrate the internal OSCCAL byte, using the external
//32,768 kHz crystal as reference
v
{
 unsigned char calibrate = 0;//FALSE;
 int temp;
 unsigned char tempL;

 CLKPR = (1<<CLKPCE); // set Clock Prescaler Change Enable
 // set prescaler = 8, Inter RC 8Mhz / 8 = 1Mhz
 CLKPR = (1<<CLKPS1) | (1<<CLKPS0);

 TIMSK2 = 0; //disable OCIE2A and TOIE2

 ASSR = (1<<AS2); //select asynchronous operation of timer2 (32,768kHz)

 OCR2A = 200; // set timer2 compare value

 TIMSK0 = 0; // delete any interrupt sources

 TCC

Chapter 6: C Functions and Program Structures

105

 for(int i = 0; i < 10; i++)

 TIFR2 = 0xFF; // delete TIFR2 flags

(TIFR2 && (1<<OCF2A))); // wait for timer2 compareflag

 TCCR1B = 0; // stop timer1

 sei(); // __enable_interrupt(); // enable global interrupt

 if ((TIFR1 && (1<<TOV1)))
 {
 temp = 0xFFFF; // if timer1 overflows, set the temp to 0xFFFF
 }
 else
 { // read out the timer1 counter value
 tempL = TCNT1L;

 temp = (temp << 8);
 temp += tempL;

 OSCCAL

OSCCAL

CCR1B = (1<<CS10); // start timer1

e makefile:

 while((ASSR & 0x01) | (ASSR & 0x04));

 // wait for external crystal to stabilise

_delay_loop_2(30000);

 while(!calibrate)
 {
 cli(); // mt __disable_interrupt(); // disable global interrupt

 TIFR1 = 0xFF; // delete TIFR1 flags

 TCNT1H = 0; // clear timer1 counter
 TCNT1L = 0;
 TCNT2 = 0; // clear timer2 counter

 while (!

 temp = TCNT1H;

 }

 if (temp > 6250)
 {

s to fast, decrease the OSCCAL--; // the internRC oscillator run
 }
 else if (temp < 6120)
 {

increase the OSCCAL++; // the internRC oscillator runs to slow,
 }
 else
 calibrate = 1;//TRUE; // the interRC is correct

 T
 }
}

Save this file as PC_Comm.c.

Finally make these changes to th

Chapter 6: C Functions and Program Structures

106

utomatically

RC += CommDemo.c

pen H

o.

Type in
ello

ype in:
o

ou should receive:

Type in
omma1

Target file name (without extension).
TARGET = PC_Comm

 List C source files here. (C dependencies are a#
generated.)
SRC = $(TARGET).c

S

Using CommDemo:

Download the code to the Butterfly.

yperTerminal O
Start the program.

In HyperTerminal you should see:

PC_Comm.c ready to communicate.
You are talking to the PC_Comm demo.

Type in:
demo?
You should receive:
You are talking to the PC_Comm dem

:
h
You should receive:
Hello yourself

T
co

 Y
You sent: '' - I don't understand.

:
23 c

You should receive:
Thank you for sending the number: 123

Chapter 6: C Functions and Program Structures

107

ype in:
commb4

u sh
ank you for sending the number: 4567

rror - Commc number too large

Type in

ve:
hank you for sending the number: 890

f software. Don’t worry about he PC_Comm yet, but you should

T
567

Yo ould receive:
Th

Type in:
commc123456789012
You should receive:
E

:
commd890
You should recei
T

This is a lot o
fully understand the demonstrator.c and demonstrator.h files by now. If not,
carefully review.

Chapter 7: Microcontroller Interrupts and Timers

109

r Interrupts and

o microcontroller applications, but they have
ing language. I can’t think of a good way to
y mix in these topics so we will stop with the

dware. Interrupts and timers will be helpful in
re useful.

 know These things are machine dependent
and sp will apply to other microcontroller

milie amily and specifically for the ATmega169.

We usu ds in microcontroller software to check to see if
an event has occurred: polling and interrupts. Polling occurs when a section of

de, u ain(), looks to see if an event has occurred. For
stanc ue or false),
d if
signe to interrupt the program, then we don’t have to
ll th ftware so that when the pin state we are

0v, an interrupt function will be called.

a you’d pick up the
 and your caller would shriek, “I’ve

r! Why don’t you check your phone every five minutes
, but

some know
out i

crocontrollers respond to interrupts much like you would. Maybe you are
gs. You use you fingernail to scratch a mark next

Chapter 7: Microcontrolle
Timers

Interrupts and Timers are critical t
nothing to do with the C programm

thlprogressively discuss C and smoo
 for a while and look at our harC

making later projects mo

C s nothing about interrupts or timers.

epts ecific. While the general conc
s, the specifics are for the AVR ffa

Interrupts

ally use one of two metho

co
in

sually an infinite loop in m
e, it may check pin 6 to see if the voltage is +3 or 0 (logic tr

 do another. If the microcontroller hardware is an +3 do one thing and if 0
de d so that pin 6 can be used
po e pin, we can set up the so

y falling from +3v to interested in, sa

Interrupts are much like interrupts in daily life. The telephone, for instance,
interrupts your activities by its insistent ringing. But imagine how it would be if

lls. Periodically, you h d to poll the telephone to receive ca
y ‘Hello, anybody out there?’receiver and sa

en wbe aiting for an hou
like a normal person?” The ringing interrupting workflow might be annoying
if one is calling you to tell you that your garage is on fire, you want to

t immediately. ab

iM
reading a book and the phone rin

Chapter 7: Microcontroller Interrupts and Timers

110

dog ar the page before closing the book. Then
e and when the call is finished and you’ve put out the fire in

ga refer to the desecrations to your book and go right back to

 an interrupt causes the microcontroller to stop
sufficient data so that later it can get back to what it was

, and when
 using the

r

ome particularly pernicious
ger from memory and since

opped by an
f the integer before returning control to the part

ding the integer which then gets the second byte of the
ger l be wrong because it will be made half from the pre-
rrupt value and half from the post-interrupt value. The crazy making

is that the interrupt can happen at any time, maybe only very
ly d p and then locks up

kind of bug in your pacemaker. You
ven g interrupts before reading variables that can be
nged by interrupts then enabling them after you’ve got the correct number.

g some fairly intense code based on the Butterfly
ick. If you compare the software used in this
 you might think I stole some of it. And you’d be

rect. That is one of the central principles of software engineering: if it ain’t
if it is nailed down, get a crowbar and rip it up. It’s

e stupid to reinvent the wheel by trying to
 you have perfectly good code already

ilable. There are only two reasons to write stuff you can steal, one is that you
s to avoid a lawsuit - if the software doesn’t

 can be used, then it is copyrighted. Hopefully, I won’t get

to the line you were reading and -e
you a

our
nswer the phon

y rage, you can
where you left off your reading.

From the hardware perspective
what it is doing, store
doing, look to see which interrupt happened, run the interrupt code
finished restore the machine to its state before the interrupt occurred
previously sto ed data.

Interrupts are great, but they provide an avenue for s

ng an intebugs. For example when your code is readi
an integer is made of two bytes it gets the first byte, then is st
interrupt that changes the value o
o ode that was rea

. The integer wil
f the c

inte
tein

debugging problem
rare uring the integer read. Your system can run like a cham

on’t want this for no apparent reason. You d
t this bug by disablinpre

ach

We’ll study interrupts by usin
software used to read the joyst

mple to the Butterfly softwareexa
rco

nailed down - steal it. Heck,
also called ‘code reuse’ and you’d b

ite something from scratch whenwr
aav

want to learn by doing, and the other i
specifically state that it
sued.

Chapter 7: Microcontroller Interrupts and Timers

111

me of this code will have concepts that will be explained later. Expect a little
nap.

Table 22 on page 47. Two of these

figured to trigger a PCI0 interrupt
 PCI1 interrupt.

on both Port B and Port E making

joystick like it was intended. The joystick pins

So
confusion. Now may be a good time for a

The Atmega169 data book lists 23 interrupts in

rrupts: PCI0 and PCI1 are triggered by changes on interrupts, the Pin Change Inte
some of the port pins. Pins on Port E can be con
and pins on Port B can be configured to trigger a

The joystick just happens to be attached to pins

interrupts with the added benefit that when we get it an ideal candidate to study
though, we’ll be able to use the

 as follows: map

 Bit 7 6 5 4 3 2 1 0

 A O

 D C

E B A O D C
======================================

t

 B PORTB

 PORTE

 PORTB | PORT
 =======

Where:
 A = up
 B = down

 O = center push
 D = lef
 C = right

Chapter 7: Microcontroller Interrupts and Timers

112

errupt, if a bit is
is enabled to trigger the PCI1 interrupt. A
le the buttons of interest:

 x

’t care what that bit is. Since some other part of
to leave it as is. The statement:

|(1<<PINB7))

 as they were. As a
1, 0|1=1, and 0|0=0. So the 1 bits

e 0 bits will set the
 it was already 0. If this is still

 a bit. It is a critical

several places in our
ill simplify our lives, the #define

1<<PINB6)|(1<<PINB7))

rectives and before the main() function,
ubstitute ((1<<PINB4)|(1<<PINB6)|(1<<PINB7)) for each

B_MASK in the code. So we can write:

PCMSKB = PINB_MASK;

 file but the C compiler will see:

= ((1<<PINB4)|(1<<PINB6)|(1<<PINB7))

r, EIMSK, and External Interrupt Flag
egister, EIFR are discussed on page 78 of the data book. We set them to enable

The PCMSK1 register controls, which pins contribute to the int
set to 1 the corresponding bit in Port B

 disables the interrupt for a pin. To enab0

n 7 6 5 4 3 2 1 0 Port B bit positio
PCMSK1 1 1 x 1 x x xbit

at we donWe use ‘x’ to indicate th
the software might be using that bit, we want

PCMSK1 |= ((1<<PINB4)|(1<<PINB6)

e rest of the bitsChanges bits 4, 6, and 7 to 1 and leaves th
review, remember what the ‘|’ does: 1|1=1, 1|0=
will set to one no matter what they were in PCMSK1 and th
PCMSK1 bit to 1 if it was already 1 and to 0 if
obscure get out the pencil-and-paper-computer and play with it
concept for understanding microcontrollers.

We are going to use: (1<<PINB4)|(1<<PINB6)|(1<<PINB7)
code, so let’s look at a new item that w
preprocessor directive. If we put:

MASK ((1<<PINB4)|(#define PINB_

In our code, usually after the #include di
the preprocessor will s
occurrence of PIN

in our source

PCMSK1

The External Interrupt Mask Registe
R
the PCI1 interrupt as follows:

Chapter 7: Microcontroller Interrupts and Timers

113

MSK = (1<<PCIE0)|(1<<PCIE1);

ined by the address ‘vector’
f the data book. We use the following code to access

SIGNAL(SIG_PIN_CHANGE1)

ctory in signal.h, which defines
piler. We’ll get to

 specifically for a particular microcontroller and a
articular C compiler and it is not portable like most of C. The original Butterfly

#pragma vector = PCINT0_vect
__interrupt void PCINT0_interrupt(void)

mething
}

EIFR = (1<<PCIF0)|(1<<PCIF1);

 EI

The program will jump to the interrupt routine when the interrupt is triggered, but
where is the interrupt routine? The location is determ
listed in Table 22, page 47 o
the PCI1 interrupt:

{
ething // Do som

}

inAVR include direSIGNAL is defined in the W
ome macros to handle interrupt functions using the gcc coms

macros later.
Interrupt handling is defined
p
code was built using the IAR C compiler and uses this format for interrupts:

{
 // Do so

We’ll get to pragmas later. IAR handles interrupts one-way and WinAVR does it
another.

Let’s review:

• We setup a register, PCMSK1, to indicate which port B pins can cause
interrupts.

• We setup the External Interrupt Mask Register, EIMSK, and External
Interrupt Flag Register, to enable the PCI1 interrupt.

• We provided the SIGNAL(SIG_PIN_CHANGE1) code to be called when
the interrupt occurs.

Chapter 7: Microcontroller Interrupts and Timers

114

rojects

/ Demonstrator.h Joystick version

define PINB_MASK ((1<<PINB4)|(1<<PINB6)|(1<<PINB7))
#define PINE_MASK ((1<<PINE2)|(1<<PINE3))

#de
#de

oid parseInput(char *);
oid joystick(void);

pen the Demonstrator.c and change it to:

P

Grab your joystick – and test your interrupts

Create a new directory Joystick and copy the PC_comm. and Demonstrator .c and
.h files from the PC_comm. directory.

In Programmers Notepad change Demonstrator.h to:

/

#include <avr/signal.h>
#include <inttypes.h>

#define KEY_UP 0
#define KEY_DOWN 1
#define KEY_LEFT 2
define KEY_RIGHT 3 #
#define KEY_PUSH 4
#define KEY_INVALID 5

#define BUTTON_A 6 // UP
#define BUTTON_B 7 // DOWN
define BUTTON_C 2 // LEFT #
#define BUTTON_D 3 // RIGHT
#define BUTTON_O 4 // PUSH

#

fine TRUE 1
fine FALSE 0

// declare functions
void PinChangeInterrupt(void);
char getkey(void);

void initializer(void);
v
v

O

Chapter 7: Microcontroller Interrupts and Timers

115

;

DDRB |= 0xD8;

dString("You are talking to the JoyStick demo.\r");

// Demonstrator.c Joystick version

#include "PC_Comm.h"
#include "Demonstrator.h"

// declare global variables
olatile char KEY = 0v
volatile char KEY_VALID = 0;
volatile char ENABLED = 0;

void initializer()
{

// Calibrate the oscillator:
OSCCAL_calibration();

 // Initialize the USART

USARTinit();

// Init port pins

PORTB |= PINB_MASK;
DDRE = 0x00;
PORTE |= PINE_MASK;

// Enable pin change interrupt on PORTB and PORTE

 PCMSK0 = PINE_MASK;
 PCMSK1 = PINB_MASK;
 EIFR = (1<<6)|(1<<7);
 EIMSK = (1<<6)|(1<<7);

 DDRD = 0xFF; // set PORTD for output
 DDRB = 0X00; // set PORTB for input

PORTB = 0xFF; // enable pullup on for input
 PORTD = 0XFF; // set LEDs off

 // say hello
 sendString("\rPC_Comm.c ready to communicate.\r");
 // identify yourself specifically

sen

}

void parseInput(char s[])
{

Chapter 7: Microcontroller Interrupts and Timers

116

 // parse first character

'm')&&(s[3]=='o')&&(s[4]=='?'))

n't understand.\r");

pt(void)

key;

ns |= (~PINE) & PINE_MASK;

 switch (s[0])
{

 case 'j':
 if((s[1] == 'o') && (s[2] == 'y'))

 joystick();
 break;

 case 'd':

((s[1]=='e')&&(s[2]==if

 sendString("You are talking to the JoyStick
demo.\r");

 break;
 default:

You sent: '"); sendString("\r
 sendChar(s[0]);

 sendString("' - I do
 break;

}
 s[0] = '\0';
}

joystick() void
{

if(ENABLED == 0) ENABLED = 1;
 else ENABLED = 0;
}

SIGNAL(SIG_PIN_CHANGE0)
{
 PinChangeInterrupt();
}

SIGNAL(SIG_PIN_CHANGE1)
{
 PinChangeInterrupt();
}

inChangeInterruvoid P
{
 char buttons;
 char

 buttons = (~PINB) & PINB_MASK;
 butto

Chapter 7: Microcontroller Interrupts and Timers

117

N_C))

_O))

= KEY_INVALID;

 KEY = key; // Store key in global key buffer
 TRUE;

rrupt flags
PCIF0);

BLED)

ar getkey(void)

 char k;

t change while in
se

 KEY_VALID = FALSE;
 }
 else

 // Output virtual keys

tons & (1<<BUTTON_A)) if (but
 key = KEY_UP;
 else if (buttons & (1<<BUTTON_B))

 key = KEY_DOWN;
 else if (buttons & (1<<BUTTO
 key = KEY_LEFT;

 else if (buttons & (1<<BUTTON_D))
 key = KEY_RIGHT;

if (buttons & (1<<BUTTON else
 key = KEY_PUSH;
 else
 key

 if(key != KEY_INVALID)
 {
 if (!KEY_VALID)
 {

 KEY_VALID =

 }
 }

 //Delete pin change inte

= (1<<PCIF1) | (1<< EIFR

 if(ENA
 {
 getkey();
 }
}

hc
{

 cli(); // disable interrrupts so 'KEY' won'
u

 if (KEY_VALID) // Check for unread key in buffer
 {
 k = KEY;

Chapter 7: Microcontroller Interrupts and Timers

118

 sendString("The joystick position is: ");

break;

 break;

SH:
 sendString("PUSH");

 break;
 default:

}

 re

e to the correct
irector

e:

PC_Comm.c ready to communicate.

 k = KEY_INVALID; // No key stroke available

 sei(); // enable interrupts

 if(k != KEY_INVALID)

{

 switch(k)
 {
 case KEY_UP:
 sendString("UP");
 break;
 case KEY_DOWN:
 sendString("DOWN");

 case KEY_LEFT:
 sendString("LEFT");

 case KEY_RIGHT:
 sendString("RIGHT");
 break;
 case KEY_PU

 sendString("?");
 break;
 }

 sendChar('\r');

 turn k;
}

Compile it and download to the Butterfly (remembering to brows
d y).

Using joystick

Using HyperTerminal, you should se

Chapter 7: Microcontroller Interrupts and Timers

119

e talking to the Joystick demo.

ove th you should receive:
The joys

ove t
he joys

u should receive:
he joys SH

ed

s loop runs in the CPU, which can do nothing else while it is
nning. You set the period of the delay by sending a parameter for the number of

ou want to waste. Knowing the time per cycle allows you to set the
me of the delay. Cycle wasting delays are a simple way to control some types of

periodi ost of totally occupying the CPU
hile w t need to do

unning, but it makes a lousy way to mark time if
ou have anything else going on. Timers are peripheral devices that run

independent of the CPU and only bother the CPU when set up to do so. The
othering can take the form of setting a flag that the CPU can poll, or throwing an

ions.

You ar

Type in:
joy

M e joystick to the left and

tick position is: LEFT

Move the joystick to the right and you should receive:
The joystick position is: RIGHT

Move the joystick up and you should receive:
The joystick position is: UP

M he joystick down and you should receive:

tick position is: DOWN T

ush the joystick while centered t and yoP
T tick position is: PU

I’m tired and going to bed. Tomorrow we’ll look at timers. I may get so excit
hat I won’t be able to sleeeeeppp ummm errr zzzzzz…. t

Timers/Counters

Good morning! In Blinky.c we set the timing of the blinks using the
_delay_loop_2(delaycount). The delay function uses a 16-bit count that takes 4
cycles/loop. Thi
ru
‘4 cycles’ y
ti

c events, but the simplicity comes at the c
asting the specified time. That’s a good idea if you don’w

anything else while the delay is r
y

b
interrupt to break into normal operat

Chapter 7: Microcontroller Interrupts and Timers

120

he reason we usually see Timer/Counter hooked together is that the
Timer/Counter peripheral keeps time by counting pulses. The pulses can come
from a synchronous periodic source providing an accurate time count, or the

nous non-periodic source providing an accurate
unt of the input pulses. In the first case we could be counting pulses from the

32.768 kHz watch crystal and keep accurate time. In the second case we could be
n ght beam interrupter circuit and keep an accurate count

 entering a door and breaking the light beam.

he AT hree Timer/Counters, two 8 bit and one 16 bit. A timer
overflows when it counts up to its maximum value (255 for the 8 bit and 65535
for the 16 bit devices) and resets to 0. We can get the Timer to overflow at lower
values by putting a value in the OCR, Output Compare Register, for the specified

 value with the count and when they match it
ill set a flag or throw an interrupt. It can also be set to overflow to 0 on a match.

capture events, where a change on a pin

mer to save the count when the event occurred. This input capture
ount c easure the width of external pulse. If the external pulses are

periodic, we have a frequency counter.

independent of program execution and there are three
ays fo ram to monitor and react to Timer/Counter events.

3. the level of output pins.

The clo

ock and the multiplexer selects which of the

 the system clock.

T

pulses can come from an asynchro
co

counti g pulses from a li
of the number of people

T mega169 has t

timer and that timer will compare the
w

The tim
will cause the ti

ers can be configured for input

c an be used to m

he Timer/Counter runs T

w r the prog

1. Poll the overflow flags.
2. Break program execution with an interrupt.

Let the timer automatically change

ck of the Timer/Counters uses a prescaler connected to a multiplexer The
prescaler is used to divide the input cl
divided signals is used as the input clock. The clock source for the prescaler can
be an external clock such as the 32.768 kHz crystal or it can use

Chapter 7: Microcontroller Interrupts and Timers

121

 oscillator:

nderstand how it works.

If you try to tell tim ATmega169,
you can duce

ery pr se pulse trains, but due to manufacturing variables, the pulse timing
l’ time. Real time is
ences an atomic clock.

 real time requires an external crystal that has
 time with the NBS clock. The Butterfly uses

.
stals are accurate, cheap, and make keeping human time easy (‘easy’

eing another relative term).

 get an accurate count of a time period by counting pulses from the watch
rystal. For instance if we count 32768 pulses we know that one second has

scillator by
ime period.

Hz, so we are going to get a
tch crystal. If we count 32768
om the oscillator in the same
get 8 million counts from the

Calibrating the Butterfly

We first used the OSCCAL_calibration() function in the PC_Comm project,
claiming that we would explain it later. Well, it’s later and, wow, it’s time to
u

e with the uncalibrated oscillator built into the
 expect to gain or lose a couple of hours a day. These oscillators pro

v eci
varies from chip to chip and do not correlate to ‘rea

etermined by the National Bureau of Standards and referd
To calibrate the built-in oscillator to

sely trimmed to pulse inbeen preci
an external 32.768 kHz watch crystal to calibrate the oscillator to run at 8 MHz
Watch cry
b

We can
c
passed. We use a shorter known good period to calibrate the internal o
etting the oscillator to generate x pulses in the known good ts

Remember that the oscillator is running at about 8 M
ot more counts from it than we will get from the wal

pulses from the watch crystal and 8 million pulses fr
eriod, we know the 8 MHz is accurate. That is, we p

oscillator in the same period we get 32768 counts (one second) from the crystal
meaning the oscillator is running at exactly 8 million pulses per second. But we
will actually use a much shorter period and have smaller counts. If the oscillator
count is too small for the period we change the value in a register to speed it up,
and if it is too large we change the register to slow it down. We do this in a loop to
keep bracketing the speed until it gets as accurate as we can make it. Sounds easy,
but as you’ll quickly see, it is a real pain just to get the registers all set up
properly.

In this section we will learn how the Butterfly oscillator is calibrated. This is
presented in two sections, the first shows the OSCCAL_calibration function, and
the second gives a detailed explanation.

Chapter 7: Microcontroller Interrupts and Timers

122

SCCAL_calibration() function – the code:

ameters : None

 CLKPR = (1<<CLKPCE); // set Clock Prescaler Change Enable
hz / 8 = 1Mhz
;

 TI e OCIE2A and TOIE2

timer2

 OC // set timer2 compare value

 TIMSK0 = 0; // delete any interrupt sources

aling
aling

i(); // mt __disable_interrupt(); // disable global
 interrupt

 te TIFR1 flags
 e TIFR2 flags

O

******************/
*
* Function name : OSCCAL_calibration
*
* Returns : None
*
* Par
 *
* Purpose : Calibrate the internal OSCCAL byte, using the external
* 32,768 kHz crystal as reference
*
***/
void OSCCAL_calibration(void)
{
 unsigned char calibrate = FALSE;
 int temp;
 unsigned char tempL;

 // set prescaler = 8, Inter RC 8M
 CLKPR = (1<<CLKPS1) | (1<<CLKPS0)

 MSK2 = 0; //disabl

ASSR = (1<<AS2); //select asynchronous operation of
(32,768kHz)

 R2A = 200;

 TCCR1B = (1<<CS10); // start timer1 with no presc
 TCCR2A = (1<<CS20); // start timer2 with no presc

 //wait for TCN2UB and TCR2UB to clear
 while((ASSR & 0x01) | (ASSR & 0x04));

 Delay(1000); // wait for external crystal to stabilise

 while(!calibrate)
 {
 cl

 TIFR1 = 0xFF; // dele
 TIFR2 = 0xFF; // delet

Chapter 7: Microcontroller Interrupts and Timers

123

 r

 timer2 counter

ag
F2A)));

 sei(); // __enable_interrupt(); // enable global interrupt

 if ((TIFR1 && (1<<TOV1)))

verflows, set the temp to 0xFFFF

 the timer1 counter value
 tempL = TCNT1L;
 temp = TCNT1H;

increase OSCCAL
 }
 else
 calibrate = TRUE; // the interRC is correct

 TCCR1B = (1<<CS10); // start timer1
 }
}

OSCCAL_calibration() function – detailed explanation

he ‘System Clock and Clock Options’ section of the ATmega169 data book tells

 TCNT1H = 0; // clear timer1 counte
 TCNT1L = 0;

 TCNT2 = 0; // clear

efl // wait for timer2 compar
(!(TIFR2 && (1<<OC while

 TCCR1B = 0; // stop timer1

 {
 temp = 0xFFFF; // if timer1 o

 }
 else
 { // read out

 temp = (temp << 8);
 temp += tempL;
 }

 if (temp > 6250)
 {

 OSCCAL--; //RC oscillator runs to fast, decrease OSCCAL
 }
 else if (temp < 6120)
 {
 OSCCAL++;//RC oscillator runs to slow,

T
more than you’ll ever want to know about the ATmega169's clock. Let’s focus on
only what we need for our system.

Chapter 7: Microcontroller Interrupts and Timers

124

of CLKPR is the prescaler enable bit, CLKPCE (an alias for bit
), so the statement:

 factor.
ince registers are preset to 0, we OR CLKPS1 and CLKPS0 as 1 and get 0011

 is set to 0 to disable the
e, interrupts (p 141 data

ils).

 Timer/Counter2, AS2, bit 3 of the Asynchronous
llow an external clock connected to the Timer

24 of the microcontroller to be used to for asynchronous

s a value, 200, that will be
ontinuously compared with the Timer Count 2, TCNT2, register

, TIMSK0, is set to 0 to delete any

The Clock Prescale Register, CLKPR, is discussed beginning on page 30 of the
data book. Bit 7
7

CLKPR = (1<<CLKPCE);

enables the Clock Prescaler Change.

The Clock Prescaler Select Bits CLKPS0, CLKPS1, CLKPS2, and CLKPS3 are
alias for the lower 4 bits of CLKPR and are used to select a clock division
S
which provides a clock division factor of 8, this divides the 8 MHz oscillator by 8
giving a 1 MHz clock:

CLKPR = (1<<CLKPS1) | (1<<CLKPS0);

The Timer/Counter2 Interrupt Mask Register, TIMSK2,

CIE2A, output compare, and TOIE2, overflow enablO
book if you want the gory deta

TIMSK2 = 0;

e must set the AsynchronousW
State Register, ASSR, to a
Oscillator, TOSC1, pin
operation of timer2 (32,768kHz):

ASSR = (1<<AS2);

The Output Compare Register A, OCR2A, contain
c

OCR2A = 200;

The Timer/Counter0 Interrupt Mask Register

terrupt sources (p 93 data book). in

TIMSK0 = 0;

Chapter 7: Microcontroller Interrupts and Timers

125

he Ti gister B, TCCR1B and the Timer/Counter2
re set to start timer1 and timer2 with no

<CS10);

egisters we wait for the TCNT2 and the TCRU2B registers
ter2 Update

usy, T
e ASS

) | (ASSR & 0x04));

it a z

;

LL T TING YET!

r can be a

e start calibrating by running a loop in which you make adjustments to the
terna ernal clock, looping until

t a fl

librate = FALSE;

T mer/Counter1 Control Re

2A, aControl Register A, TCCR
prescaling:

= (1<TCCR1B
TCCR2A = (1<<CS20);

A tting all these rfter se
to be set from temporary memory, by waiting for the Timer/Coun
B CN2UB, and the Timer/Counter2 Update Register Busy,TCCR2A, bits of

R register to be cleared (p 139 data book). th

while((ASSR & 0x01

aW while for the crystal to stabili e:

Delay(1000)

VEN’T EVEN STARTED CALIBRAA HIS AND WE HA

Getting registers set properly to do much of anything in a microcontrolle
long and frustrating exercise, and another good reason to steal code where
possible.

W
in l oscillator and comparing the results to the ext
you get it right.

Se ag:

unsigned char ca

 terminate the loop when true: to

while(!calibrate)

On each pass you do the following:

Chapter 7: Microcontroller Interrupts and Timers

126

:

;
0xFF;

 reach the count

R2 && (1<<OCF2A)));

er:

set our temp variable to 0xFFFF.

if ((TIFR1 && (1<<TOV1)))
{

FF

 temp = (temp << 8);

Disable global interrupts:

cli();

Clear the timer interrupt flags

xFFTIFR1 = 0
TIFR2 =

Clear the timer counts:

TCNT1H = 0;
TCNT1L = 0;

 0; TCNT2 =

r toWait for the time

while (!(TIF

Stop the tim

TCCR1B = 0;

Enable global interrupts

sei();

Has Timer/Counter1 overflowed? If so

temp = 0xFFFF;//if timer1 overflows, set the temp to 0xFF
}

erwise read the timer1 counter value into the temp variable Oth

 else

{
 tempL = TCNT1L;
 temp = TCNT1H;

Chapter 7: Microcontroller Interrupts and Timers

127

 temp Register,
CCAL

r runs to fast, decrease OSCCAL

therwise, if temp is less than 6120, increment OSCCAL.

)

 llator runs to slow, increase OSCCAL
 }

; // the interRC is correct

 timer:

CR1B = (1<<CS10); // start timer1

ow if you are beginning to think all this is mighty confusing, you are finally
understand the core truth of microcontroller programming. It IS

 bug infested and time consuming and ego
estroying and… well, you name it. But finally getting something working is the

u don’t actually get some
leasure from working out these puzzles you don’t need to be doing this for a
areer. Try professional knife fighting… you’ll survive longer. This complexity is
rimary reason to ‘reuse’ code. And speaking of stealing them naked, the
llowing project uses code lifted directly from the WinAVR port of the ATMEL
utterfly code.

 temp += tempL;
 }

llator Calibration Is greater than 6250? If so decrement the Osci
OS

if (temp > 6250)
{
 OSCCAL--;//RC oscillato
}

O

 else if (temp < 6120
 {

 OSCCAL++; //RC osci

If temp is between 6250 and 6120 the calibration is complete and we can go

ome. h

 else
 calibrate = TRUE

But before we turn out the light, we start the

 TC

N
beginning to
mighty confusing. And frustrating and
d
greatest pleasure known to mankind, (if you overlook sex, eating, parenting, and
anything else you like to do). A word of advice: if yo
p
c
p
fo
B

Chapter 7: Microcontroller Interrupts and Timers

128

interrupt to trip at the specified rate and toggle an

Hz. We set the Timer0

OCR0A = 250;

Finally we set the Timer/Counter Control Register A to the Clear Timer on
Compare waveform and the prescaler to divide the clock by 8:

 // Set Clear on Timer Compare (CTC) mode, CLK/8 prescaler
 TCCR0A = (1<<WGM01)|(0<<WGM00)|(1<<CS01);

But, heck Let’s get fancy and allow ourselves to change the compare value by
sending data from the PC. We write the MilliSec_init and the set_OCR)A
functions:

oid MilliSec_init(unsigned char count)

 // Initialize Timer0.

Projects

Precision Blinking

Let’s use interrupts and timers to provide precise control over the blink rate for an
LED. We’ll let the PC send data as a character string to the microcontroller and let
the microcontroller set a timer
LED.

First Let’s think about setting a timer to throw an interrupt every millisecond. The
USART initialization sets the system oscillator to 2 M
prescaler
to clk/8 which gives a 250 kHz input to the timer/counter. Then we set a compare
value of 250 so the timer throws an interrupt every 250 counts: 250000/250 =
1000, and we get interrupted a thousand times a second, almost like having a
toddler around.

We set timer0 to do a compare interrupt:

 TIMSK0 = (1<<OCIE0A);

Then we set the timer0 compare register to 250:

v
{

Chapter 7: Microcontroller Interrupts and Timers

129

// Sets the compare value

ng at the fastest rates in the lower

or LED, so the blink periods for each LED are:

LED2 = 125 Hz.

LED5 = 15.625 Hz.

LED7 = 3.90625 Hz.

e te
z and Hz.

 // Enable timer0 compare interrupt
 TIMSK0 = (1<<OCIE0A);

 // Sets the compare value
 set_OCR0A(count);

 // Set Clear on Timer Compare (CTC) mode, CLK/8 prescaler
 TCCR0A = (1<<WGM01)|(0<<WGM00)|(1<<CS01);

}

void set_OCR0A(unsigned char count)
{

 OCR0A = count;
}

Now we can initialize the timer when the program starts and change the compare
value when we feel like it. Let’s reuse the PC_Comm code to generate an
annoying LED precision blinker that’s actually an 8-bit counter. As you will see,
or rather won’t see, you can’t see the LED blinki
4 bits, but you can see blinking in the slower upper 4 bits. The lowest bit toggles
the LED 1000 times a second, it is on for 1000th of a second then off for 1000th of
a second, which yields a blink period of 500 Hz. Each LED blinks at half the rate
of the pri

LED0 = 500 Hz.
LED1 = 250 Hz.

LED3 = 62.5 Hz.
LED4 = 31.25 Hz.

LED6 = 7.8125 Hz.

If w ll the Butterfly to set the compare to 125, then the interrupt occurs at 2000

ecomes 1000H the fastest blink period b

Chapter 7: Microcontroller Interrupts and Timers

130

k.

ing with integers. If
e set the compare to 130 we get a rate of 1923.076923 which yields 60.096…Hz

on LED5, pretty darn close, but we have an error of 1 – (60/60.09615385) * 100
= 0.16 %, not bad at all. But is it close enough? Only you can decide that

Create a new directory Precision Blinking and copy the PC_Comm. and
Demonstrator .c and .h files from the PC_Comm. directory.

In Programmers Notepad change Demonstrator.h to:

// Demonstrator.h Precision Blinking version

#include <avr/signal.h>
#include <inttypes.h>

void initializer(void);
void parseInput(char *);

int parse_ctc(char *);
void set_ctc(int);

void MilliSec_init(unsigned char count);
void set_OCR0A(unsigned char count);

In Programmers Notepad change Demonstrator.c to:

// Demonstrator.c Precision Blinking version

#include "PC_Comm.h"
#include "Demonstrator.h"

unsigned char milliseconds = 0;

void initializer()
{
 // Calibrate the oscillator:

What happens if we send it 100? Well, 250000/100 = 2500, so we would get a
1250 Hz blin

How do we get a 60 Hz blink? We can get LED3 to blink at 60 Hz if the base rate
is 480 Hz, which we can get from 960 interrupts per second, which we could get
from a compare count of 260.41666… and we ain’t gonna get that for two
reasons: one, the count overflows at 255 and two, we are deal
w

Chapter 7: Microcontroller Interrupts and Timers

131

void parseInput(char s[])

 // parse first character
 switch (s
 {
 case 'c':
 if((s[1] == 't') && (s[2] == 'c'))
 parse_ctc(s);
 break;
 case 'd':
 if((s[1]=='e')&&(s[2]=='m')&&(s[3]=='o')&&(s[4]=='?'))
 sendString("You are talking to the Precision Blinking demo.\r");
 break;
 default:
 sendString("\rYou sent: '");
 sendChar(s[0]);
 sendString("' - I don't understand.\r");
 break;

 }
 s[0] = '\0';
}

int parse_ctc(char s[])
{
 char ctc[11];
 unsigned char i = 3, j = 0;

 while((s[i] != '\0') && (j <= 11))
 {

 if((s[i] >= '0') && (s[i] <= '9'))
 {

 OSCCAL_calibration();

 // Initialize the USART
 USARTinit();

 // set PORTD for output
 DDRD = 0xFF;

 MilliSec_init(250); // default to 1000 Hz

 // say hello
 sendString("\rPC_Comm.c ready to communicate.\r");
 // identify yourself specifically
 sendString("You are talking to the Precision Blinking demo.\r");

}

{

[0])

Chapter 7: Microcontroller Interrupts and Timers

132

 ctc[j++] =
 }
 else

 return 0;
 }

 }

 ctc[j] = '\0';

 if(j>4)// must be < 256
 {
 sendString("Error - Parse_ctc number too large");
 return 0;
 }
 else
 {
 set_ctc(atoi(ctc));
 }

1;

oid set_ctc(int count)
{
 char ctc[11];

 sendString("Setting the Compare Timer Count to: ");
 itoa(count,ctc,10);
 sendString(ctc);
 sendChar('\r');

 MilliSec_init(count);

}

/*
The USART init set the system oscillator to 2 mHz. We set the Timer0

ompare of 250 throws an interrupt every millisecond.

s[i++];

 {
 sendString("Error - Parse_ctc received a non integer: ");
 sendChar(s[i]);
 sendChar('\r');

 return
}

v

prescaler to clk/8 which gives a 250 kHz input to the timer/counter. A
c
*/
void MilliSec_init(unsigned char count)
{
 // Initialize Timer0.

 // Enable timer0 compare interrupt

TIMSK0 = (1<<OCIE0A);

Chapter 7: Microcontroller Interrupts and Timers

133

// Sets the compare value

mer Compare (CTC) mode, CLK/8 prescaler
<WGM00)|(1<<CS01);

ARE0)

erfly (remembering to browse to the correct

100

u rec

viding a 500
z puls 3.90625 Hz. pulse on LED7.

 set_OCR0A(count);

 // Set Clear on Ti
 TCCR0A = (1<<WGM01)|(0<

}

void set_OCR0A(unsigned char count)
{
 // Sets the compare value
 OCR0A = count;
}

 Interrupt occurs once per millisecond //

SIGNAL(SIG_OUTPUT_COMP
{
 PORTD = milliseconds++;
}

Compile it and download to the Butt
directory).

Using Precision Blinking:

In HyperTerminal you will see:
PC_Comm.c ready to communicate.
You are talking to the Precision Blinking demo.

ype in: T
ctc

Yo eive:
Setting the Compare Timer Count to: 100

Note that a ctc value of 250 resets the interrupt to 1 millisecond pro
H e on LED0 and a

Chapter 7: Microcontroller Interrupts and Timers

134

lse Width Modulation – LED Brightness Control

en w n an f at equal intervals, we get a pulse
e frequency is the number of pulses we

 referred to as Hz pronounced ‘hurts’ named after
, you can

n is high half the time and low half the time.
,

f, to 1 0%, a

We have set up our LEDs so that the Port D pins source +3v to turn them on.
no current flows so the LEDs are off. The

stors providing 9 mA of current and a power of
for LEDs. In the

me. The
time, so

atts. By cutting the on time in half, we get a
135/2 = 0.00675 watts, less power and less light output.

y, I think I see a way to control the LED brightness. If we keep the frequency
pulses constant, but lower or raise the on time it is on, we can control the

t output from it.

Pu

hW e continuously turn a port pin o d of
he pulstrain like the system clock. T

econd, usuallygenerate in one s
the Hertz rental car company. Okay, I lied; it is actually named for… hey
Google this as easily as I can.

e piFor an equal interval pulse train th
This is called a 50% duty cycle (Figure 17). We can vary the duty cycle from 0%
always of 0 lways on, or anything in betw

een.

When the pin is set to low, 0 volts,
current flows thru 330-ohm resi
.027 watts. That’s not much power for light bulbs, but enough
precision blinking project we were only giving the LED power half the ti

ut they are all on for only half the on/off time doubles for each LED, b
7/2 = 0.0135wthey are using only .02

25% duty cycle and 0.0
He

f o
power to the LED and the ligh

50% Duty Cycle

7 % Du5 ty Cycle

25% Duty Cycle

Figure 17: Pulse Width Modulation Duty Cycle

Chapter 7: Microcontroller Interrupts and Timers

135

 seen that the human eye perceives fast blinking LEDs as being
also see rapidly pulsed light as having brightness

eak and the average. This means that a high intensity
s brighter than it would powered by a direct

e average of the pulsed signal. Our
 less

ly can we control the brightness, we can do a
 into thinking it’s seeing something brighter even though we
. This is good news for our power use, but bad news in trying

s. Cutting the duty cycle in half
a halving of the perceived brightness.

llow us to play with the frequency and the duty cycle
n we can play with the parameters and see how we think they affect brightness.

de? Nope, all we have to do is change the
 TCC0RA register from WGM01 = 1 and

GM0

py the .c and .h files and the makefile from
Demonstrator files milliSecInit routine

// Set Clear on Timer Compare (CTC) mode, CLK/8 prescaler
TCCR0A = (1<<WGM01)|(0<<WGM00)|(1<<CS01);

PARE0) change:

D, 0);

We have already
co tly on. Our eyes

ween the p
nstan

somewhere bet
ulse wp ith a low duty cycle pulse look

g the same power as thcurrent providin
perceptual peculiarity gives us a way to provide a brighter seeming light with
power if we use PWM. So not on
trick to fool the eye

werare using less po
to extrapolate duty cycle to perceived brightnes
does not translate into

t’s write a program to aLe
eth

Is it hard to write the PWM co

aveform generation bits in thew
W 0 = 0 to WGM01 = 0 and WGM00 = 1.

Create a new directory, PWM, and co
the Precision Blinking directory. In the
change:

to:
 // Set PWM Phase Correct mode, CLK/8 prescaler
 TCCR0A = (0<<WGM01)|(1<<WGM00)|(1<<CS01);

and in the SIGNAL(SIG_OUTPUT_COM

 PORTD = milliseconds++;

to

if(PORTD &= 1) cbi(PORT
:

 else sbi(PORTD, 0);

Chapter 7: Microcontroller Interrupts and Timers

136

ED 0 changes
ightn

t was sooooo. easy. If you feel cheated because it was soooo easy, then read
ok As usual these programs are soooo

, but a major bear and a half trying to
ciphe bits you really need.

Fire up HyperTerminal and try some ctc values noticing how L
br ess.

haT
the section on Timer/counter0 in the data bo
easy once you know how to do them

et the few tidde r the data book to g

Chapter 7: Microcontroller Interrupts and Timers

137

et’s modify the LED PWM software a little and use it to control the speed of a

stroy the Butterfly when messing with this circuit. I
actually managed to burn up both the optoisolator and the power transistor when
fooling with this design so, at least for me, this is not overkill. Since this is not an
electronics text, we won’t learn anything about how the circuit works. Just follow
the illustrations and you shouldn’t have any problems.

Pulse Width Modulation - Motor Speed Control

L
motor. But first, Let’s design and build the hardware. We’ll use parts from the
JAMECO parts list: a 9v motor, a 9v battery, a 9v battery connector, a 4N28
optoisolator, a TIP115 power transistor, a 330 Ohm resistor, and a 2.2K Ohm
resistor. I’ve included the optoisolator for the simple reason that it helps lessen the
possibility that we’ll de

Figure 18: Motor Speed Control Schematic and Parts

Chapter 7: Microcontroller Interrupts and Timers

To PORTD PIN 1
330 Ohm to 4N28 pin 1

4N28 pin 2 to +3v GND
TIP115

Diode 1N4001

2.2k Ohm from 4N28
pin51 to TIP115 pin 1

4N28 pin 4 to 9v GND

+9v to TIP115 pin 3
9v GND

Motor a to TIP115 pin 2

Motor b to 9v GND

Figure 19: Motor Speed Control Breadboard Labeled

Figure 20: Motor Speed Control Hardware

138

Chapter 7: Microcontroller Interrupts and Timers

139

e with foam core board (you could use corrugated box
rappily) to hold a motor. The upright on the left will be

d in upter.

The motor base is mad
ard) cut and glued (cbo

seu the next project to hold an optointerr

Figure 21: Motor Base

Figure 22: Motor Whe ionel Stat ary and Spinning

aft and made
 slipped it over the tape. It works.

ject.

The wheel pattern is located in Appendix 6. Print it out and stick it to a piece of

tape on the motor shsturdy thin cardboard. I put some electrical
heel andsome radial cuts in the center of the w

t proThe cutout will be used in the nex

Chapter 7: Microcontroller Interrupts and Timers

140

d Control version

#include "PC_Comm.h"

1<<PINB6)|(1<<PINB7))
2)|(1<<PINE3))

second

= 0; // IR detector count per second
astspeed = 0; // IR detector count per second

d initializer()

 the oscillator:
 OSCCAL_calibration();

SART

(1 << 7); // flag for PCINT15-8

 PORTB for input
nable pullup on for input

tput
(1 << PIND0); // set pin 0 to enable pullup

lliS gnal

PC_Comm.c ready to communicate.\r");
elf specifically
are talking to the Motor Speed Control

r");
 sendString("setxxx to set speed\r");

// Demonstrator.c Motor Spee

#include "Demonstrator.h"

#define PINB_MASK ((1<<PINB4)|(
#define PINE_MASK ((1<<PINE

unsigned char milliseconds = 0;
unsigned int second = 0; // count to 1000 and trigger one
event
unsigned int speed
unsigned int l

voi
{
 // Calibrate

ialize the U // Init
 USARTinit();

n PINB0 // Set for pin change o
 PCMSK0 = (1 << PINB0); //
 EIFR =

EIMSK = (1 << 7); // mask for PCINT15-8

 DDRB = 0X00; // set

 PORTB = 0xFF; // e

 // set PORTD for output

//DDRD = 0xFF;
 DDRD = (1 << PIND0); // set pin 0 to ou
 PORTD =

 mi ecInit(127); // 50% duty cycle 1kHz si

 // say hello
 sendString("\r
 // identify yours

u sendString("Yo
 demo.\

}

Chapter 7: Microcontroller Interrupts and Timers

141

 s[])

e first character

if((s[1] == 'e') && (s[2] == 't'))

se 'd':
if((s[1] == 'e') && (s[2] == 'm') && (s[3] ==

'o') && (s[4] == '?'))
lking to the Motor Speed

Control
demo.\r");

k;
 default:
 sendString("\rYou sent: '");

s[0]);

(char s[])

unsigned char i = 3, j = 0;

 {

);

void parseInput(char
{
 // pars
 switch (s[0])
 {
 case 's':

 parse_set(s);
 break;
 ca

 sendString("You are ta

 brea

 sendChar(

 sendString("' - I don't understand.\r");
 break;

 }
 s[0] = '\0';
}

int parse_set
{

char set[11];

 while((s[i] != '\0') && (j <= 11))
 {

 if((s[i] >= '0') && (s[i] <= '9'))

 set[j++] = s[i++];

 }
 else
 {

 sendString("Error - Parse_set received a non integer: "
 sendChar(s[i]);
 sendChar('\r');
 return 0;
 }
 }

Chapter 7: Microcontroller Interrupts and Timers

142

set[j] = '\0';

arse_set number too large");

}
else

t));
}

ed[11];

unt,speed,10);

('\r');

milliSecInit(count);

*

/

 // Sets the compare value
setOCR0A(count);

 // Set PWM Phase Correct mode, CLK/8 prescaler

 if(j>4)// must be < 256
 {
 sendString("Error - P
 return 0;

 {
 set_speed(atoi(se

 return 1;
}

void set_speed(int count)
{
 char spe

 sendString("Setting the Compare Timer Count to: ");
 itoa(co
 sendString(speed);
 sendChar

}

/
The USART init set the system oscillator to 2 mHz. We set the
Timer0 prescaler
to clk/8 which gives a 250 kHz input to the timer/counter. A
compare of 250 throws
an interrupt every millisecond.
*
void milliSecInit(unsigned char count)
{
 // Enable timer0 compare interrupt
 TIMSK0 = (1<<OCIE0A);

Chapter 7: Microcontroller Interrupts and Timers

 TCCR0A = (0<<FOC0A)|(0<<WGM01)|(1<<WGM00)|(1<<CS01);

143

void setOCR0A(unsigned char count)
{
 // Sets the compare value
 OCR0A = count;
}

// Interrupt occurs twice per Millisec, timed for PWM
SIGNAL(SIG_OUTPUT_COMPARE0)
{
 // Toggle PORtD pin 0
 if(PORTD &= 1) cbi(PORTD, 0);
 else sbi(PORTD, 0);
}

}

Chapter 7: Microcontroller Interrupts and Timers

Speedometer

We used an optoisolator to separate the motor power circuits from the Butterfly to
help lessen the likelihood of blowing something up. A device similar to an
optoisolator is an optointerrupter, which has an air channel between the IR light
emitting diode and the IR detector transistor, see Figure 23. An opaque object
passed between the diode and the detector causes the transistor to turn off thus
‘interrupting’ the current. We can tie the transistor to a pin on the Butterfly and
detect the interruption. Did you notice the opening cut in the wheel in Figure 22?
(when you cut out the slot, glue it just under the inner side of the slot to help keep
the wheel balanced) If you rig up the motor base so that the wheel spins thru the
slot in the optointerrupter, each time the opening passes; the transistor turns on
and back off when the slot has passed. If we write our software so that a voltage
change on the pin attached to the optointerrupter causes an interrupt in the
Butterfly, we can count those interrupts. If we count for exactly one second we
have the number of times the wheel rotates per second, which is the rotational
speed in Hz. Cool!

Solder long wires to the optoisolator, and then add electrical tape to prevent the
legs from shorting. Next carefully glue it to the motor base in a position so that
the wheel rotates thru it. Make sure the wheel is balanced and will turn cleanly
(easier said than done) and fully block and unblock the optoisolator slot as the
wheel turns, Figure 22.

144

Chapter 7: Microcontroller Interrupts and Timers

145

Figure 23: Opto Interrupt Switch - H21A1

Figure 24: Opto Interrupter Glued on Motor Base

• Optoisolator pin 2 to a 200 Ohm resistor

Wiring:

• Optoisolator pin 1 to +3v

Chapter 7: Microcontroller Interrupts and Timers

146

• 200 Ohm resistor to Butterfly GND
• Optoisolator pin 3 to PORTB pin 4 (remember counting starts at 0)
• Optoisolator pin 4 to Butterfly GND

You will notice that you learned the mechanical engineering skills needed for this
project in kindergarten. Though most kindergarteners could probably do a more
attractive job than I did, it works.

Figure 25: Speedometer

Create a Speedometer directory and copy the motor control software to it. Make
the following changes in Demonstrator.c:

// Demonstrator.c Speedometer version

#include "PC_Comm.h"
#include "Demonstrator.h"

Chapter 7: Microcontroller Interrupts and Timers

147

= 0;
/count to 1000 and trigger one second

 the USART

 Hertz\r");

 parse_set(s);

unsigned char milliseconds
nsigned int second = 0;/u
event
unsigned int speed = 0; // IR detector count per second
unsigned int lastspeed = 0; // IR detector count per second

void initializer()
{
 // Calibrate the oscillator:
 OSCCAL_calibration();

 // Initialize

USARTinit();

 // Init port pins
 DDRB |= 0x08;
 PORTB |= ((1<<PINB4));//|(1<<PINB6)|(1<<PINB7));

 // Enable pin change interrupt on PORTB
 PCMSK1 = ((1<<PINB4));//|(1<<PINB6)|(1<<PINB7));
 EIFR = (1<<6)|(1<<7);
 EIMSK = (1<<6)|(1<<7);

 DDRD = 0xFF; // set PORTD for output
 PORTD = 0XFF; // set LEDs off

 milliSecInit(127); // 50% duty cycle 1kHz signal

 // say hello
 sendString("\rPC_Comm.c ready to communicate.\r");
 // identify yourself specifically
 sendString("You are talking to the Speedometer demo.\r");
 sendString("'setxxx' to set speed\r'Hz' to get speed in

}

void parseInput(char s[])
{
 // parse first character

switch (s[0])
 {
 case 's':
 if((s[1] == 'e') && (s[2] == 't'))

Chapter 7: Microcontroller Interrupts and Timers

148

d();

 sendString("\rYou sent: '");

s[0] = '\0';

sendString(spd);

se
 {

 break;
 case 'H':
 if((s[1] == 'z'))

 sendSpee
 break;
 case 'd':
 if((s[1] == 'e') && (s[2] == 'm') && (s[3] ==

'o') && (s[4] == '?'))
 sendString("You are talking to the Speedometer

 demo.\r");
 break;
 default:

 sendChar(s[0]);
 sendString("' - I don't understand.\r");
 break;

 }

}

void sendSpeed()
{
 char spd[11];

 sendString("Speed = ");
 itoa(lastspeed,spd,10);

 sendChar('\r');

}

int parse_set(char s[])
{
 char set[11];
 unsigned char i = 3, j = 0;

 while((s[i] != '\0') && (j <= 11))
 {

 if((s[i] >= '0') && (s[i] <= '9'))
 {
 set[j++] = s[i++];
 }
 el

Chapter 7: Microcontroller Interrupts and Timers

149

 sendString("Error - Parse_set received a
non integer: ");

);

 256

dSt oo large\r");

 set_speed(atoi(set));

oid set_speed(int count)

ed[11];

em oscillator to 2 mHz. We set the
Timer0 prescaler to clk/8 which gives a 250 kHz input to the

re of 250 throws an interrupt every

SK0 = (1<<OCIE0A);

 sendChar(s[i]
 sendChar('\r');
 return 0;
 }
 }

 set[j] = '\0';

 if(j>4)// must be <
 {

 sen ring("Error - Parse_set number t
 return 0;
 }
 else
 {

 }

 return 1;
}

v
{

char spe

ompare Timer Count to: "); sendString("Setting the C
 itoa(count,speed,10);
 sendString(speed);
 sendChar('\r');

milliSecInit(count);
}

/*
The USART init set the syst

timer/counter. A compa
millisecond.
*/
void milliSecInit(unsigned char count)
{
 // Enable timer0 compare interrupt

TIM

Chapter 7: Microcontroller Interrupts and Timers

150

 value

se Correct mode, CLK/8 prescaler
GM01)|(1<<WGM00)|(1<<CS01);

id s ount)

mpare value

ccurs twice per Millisec, timed for PWM

RTD &= 1) cbi(PORTD, 0);
else sbi(PORTD, 0);

once per second
 1000)

d = speed; // store most recent speed in Hz

IGNAL(SIG_PIN_CHANGE1)

le changes. We reused the pin interrupt code from
he interrupt routine we increment a speed counter
opy the speed counter value to ‘lastspeed’ variable,

z when requested.

mbering to reset the AVRStudio programming tool to use
omm.hex, which I forgot AGAIN! Open HyperTerminal, toggle

 // Sets the compare
 setOCR0A(count);

 // Set PWM Pha
 TCCR0A = (0<<FOC0A)|(0<<W

}

vo etOCR0A(unsigned char c
{
 // Sets the co
 OCR0A = count;
}

/ Interrupt o/
SIGNAL(SIG_OUTPUT_COMPARE0)
{
 // Toggle PORTD pin 0
 if(PO

the speed count // get
 if(second++ >=
 {

= 0; second
astspee l

 speed = 0;
 }
}

S
{

speed++;
}

We’ve made a couple of simp

ware and in tthe joystick soft
riablva e. Once per second we c

which we report as the speed in H

d, remeCompile and loa
e correct PC_Cth

Chapter 7: Microcontroller Interrupts and Timers

151

joystick to the up position for a moment, and
g like the following:

the power to the Butterfly, move the
you should see somethin

Play with it for a while and you’ll see that this isn’t particularly accurate. But
what do you expect for cardboard and glue?

Chapter 8: C Pointers and Arrays

153

ha and Arrays C pter 8: C Pointers
Addresses of variables
During the stone age of computers, when C was written, programming was done
by positioning switches and looking at lights.

Figure 26: The PDP-11 could be programmed by switches, though Dennis Ritchie used a

eletype machine to write the C programming language.

presented data another represented the address of a memory
ted to stick the data. Addresses are sequential and represent

T

One set of switches re
location that you wan
contiguous memory locations.

Chapter 8: C Pointers and Arrays

154

attached
hes

ge programs
y primitive

 assembly to
red it. The bootloader was only 81 bytes long. I

ntly and saw many a set of eyes glaze over. Anyone
hat I was doing suggested, after rolling his eyes to

OM programmer and write my code on a PC, like
normal person. They just didn’t get it -- I wanted to design the cheapest possible

to zero dollars. Some of us prefer to do
 be learned and I learned beyond any doubt

 enter 81 lousy bytes on a hand made computer.
ade the thing work

 reenter all the data. 81
 much until you try to enter them and their addresses in
After all the cursing died down I retired my machine,

ogrammer, and joined the real world.

er, burned into my mind the relation of data
 relation until you get to C where this topic

ugs than any other.

ata is These
ses – information about the whereabouts of memory

ations. Memory is a place. Addresses tell us how to find the place. Sometimes
fusion occurs when we realize that addresses are just numbers and can become

mory locations having… addresses. The data at one
mory location can be the address of another memory location whose data may
may not be an address. Data is just a number, in our case an 8-bit byte. When

 address of another location of data it is called a pointer. This might
m simple, but pointers can become so confusing and error prone that many

gher ages won’t let the programmer touch them. This ability

I once hand built an 8051 microprocessor ‘system’ with SRAM memory
to huge lantern battery (SRAM forgets if the power goes off) and switc
attached to the data and address ports. I would set a data byte then set an address
two bytes) and push a button to write the data to the SRAM. When it was all (

loaded, I pressed another button to start the 8051. I bet you can guess what I had
the program do. That’s right: blink LEDs. Later I wrote a program that allowed

e 8051 to communicate with an original IBM PC and download larth
from the PC, and once loaded – run them. I carefully wrote m

otloader on paper in assembly language, then translated it frombo
machine code, then hand ente
bragged about this incessa
who knew anything about w
clear the glaze, that I get an EPR
a
system and factored in my time as equal
things the hard way if something is to
just how hard it is to correctly
Fortunately for me I’m too darn stubborn to admit defeat and m

ntil I accidentally disconnected the battery and had tou
bytes may not seem like

nary on DIP switches. bi
bought an EPROM pr

That experience more than any oth
and addresses, a seemingly

nfusion and b
 trivial

causes more co

D stored in memory locations – real tangible things made of silicon.
locations have addres
loc

nco
data that can be stored in me
me
or
the data is the
se
hi

e
programming langu

Chapter 8: C Pointers and Arrays

155

to conf rus love pointers and will go to incredible lengths to
obfuscate their code with them.

Pointers are the reason that many refer to C as a mid-level rather than a high level
program In high level languages the programmer only deals with
data an akes all the decisions about the addresses. In low-level
languag rs, the programmer assigns the addresses to the data. In
C, we are not required to play with addresses, but are allowed to if we want to.
And, dangerous as they are, some things can only be done using pointers. Pointers

 things more efficiently and cleverly than would

ointers, as a simple example consider writing a
ith data from a sequence of contiguous locations

memory. Say you have a string: “Say you have a string:” 22 characters
ll character ‘\0’ all contiguous following the first memory
s that we will give the alias of MemStart. We know that ‘S’ is

 ‘a’, and so on to MemStart + 23
this sequence, we could send
hat they would all be pushed

ff by the function. But we know
ocontrollers, so we would like to us a

Start as the parameter and have
 function start looking there and increment sequentially through memory until

we will agree always ends this kind of sequence (like for
nd with ‘\0’). Now instead of using 23

rame e one parameter
mber are two

f it, but unfortunately many
an

kill

 have been lumped with the goto statement as a
 programs. This is certainly true

use is why C gu

ming language.
d the compiler m
es, like assemble

also allow us to do many
e case. otherwise be th

There are many reasons to use p

nction that will do something wfu
in
followed by a nu

tion, an addresloca
located at MemStart and MemStart + 1 stores
which stores ‘\0’. If we want our function to handle
ll 23 bytes as parameters to the function, meaning ta

on stack before the function call and pulled o the
that we need to go light on the stack in micr

. Easy, just send the variable Memdifferent method
the
it sees ‘\0’ which

mple, a string which is defined to eexa
pa ters and pushing 23 t the stack we only have to usby es on
and push only two bytes (addresses are ints, which as you may reme
bytes long).

, and it is once you get the hang oSounds simple
novice programmers use pointers in much the same way a toddler would use
AK-47. To paraphrase the oft-stated defense of guns, ‘pointers don’t
programs, programmers kill programs.’

To quote K&R

arvelo
, p 93: “Pointers

m us way to create impossible-to-understand

Chapter 8: C Pointers and Arrays

156

create pointers that point
iscipline, however, pointers can also be used to

o buffer of an IBM PC. I made
is, I started a count with 1 instead of 0, and wrote

 last data byte to an address that was one byte outside of the video buffer. That
e was only occasionally important enough to crash the system. When your

ittently with no apparent rhyme or reason, you may well
suff d bug to find.

tored data) that contain the address of other variables
ters to data, pointers to pointers, pointers to

le and clear as possible

ceding its name with an *, called the

 &, called the address operator:

ve two worse choices been made for
mbol d for

f the variable name
could have been written to require that

e suffix follow the pointer everywhere, thus helping us know what we are
ling with. But NOOOO…. * and & were chosen, and confusion reigns eternal.

e could fix this problem by adding a couple of defines to alias the * and & as ptr
 addof, and we could require that we always name pointers in such a way that

, but since our goal is to learn C as Ritchie and
NSI intended and not my version of C, we’ll do it the hard way. What? you

when they are used carelessly, and it is easy to
somewhere unexpected. With d

and simplicity.” achieve clarity

I once used a pointer to sequentially access the vide
a simple ‘fence-post’ error, that
the

ytb
computer crashes interm
b ering from a bad pointer use. It can be a damn hare

To recap: variables (RAM s
are called pointers. You can have poin
pointers to pointers to... but let’s try to keep it as simp

hoops… too late). (w

 pointer by preWe declare a variable to be a
indirection or dereferencing operator:

 int *q; // q is a pointer to an int

We get the address of a variable using

 q = &v; // put the address of v in the pointer q

annals of mnemonics haNever in that
sy s. Instead of *, the letters ‘ptr’ could have been chosen

 in the second use o
 for pointer, an

&, the letters ‘addof’. There is no indicator
‘q’ that it is a pointer, but the compiler
som

ead
W
and
we always know it is a pointer
A
don’t think it will be hard to remember what the * and & do? Wait till you run
into things like:

Chapter 8: C Pointers and Arrays

157

ointer to
eturning char.’ Yes, they are serious, and I have

h worse. Be very afraid.

is a pointer to an int

ptrFred = &z[0]; //iptrFred now points to the first element in array z

ce or absence of the indirection operator as it
tion’ and

‘dereference’ as the names of the operator, when one weird word would have been

ds 10 to the content of z[0]

e content of z[0]
Fred)++; // after using the content of z[0] increment it to z[1]

trFred++; // iptrFred now points to z[1]

 char (*(*x())[])()

which is on p. 126 of K&R and translates to: ‘x is a function returning a p
an array of poin
ncountered muc

ters to functions r
e

Let’s look at some examples:

int x = 10, y = 20, z[30];
nt * iptrFred; // iptrFred i

iptrFred = &x; //iptrFred now contains the address of the variable x
y = *iptrFred; // y is now equal 10;
*iptrFred = 0; // x is now equal 0
i

Pay careful attention to the presen
dereferences and wonder why on earth they chose both ‘indirec

plenty?

More examples:

iptrFred = *iptrFred + 10; // ad*
*iptrFred += 10; // same as above

equal to the content of z[0] + 20 y = *ptrFred + 20; // sets y
trFred; // increments th++*ip

iptr(*
ip*

The last two may have caused you to go ‘say what?’ It has to do with operator
precedence. Now is a good time to thank the stars that this is a self-teaching book
nd I can’t test you on this stuff. a

Function Arguments
Arguments are passed to functions by value, and as we saw in an earlier
discussion of functions, there is no way for a function to affect the value the
variable passed to it in the function that did the passing. Okay, Let’s show an
example:

Chapter 8: C Pointers and Arrays

158

void func1()

 func2 it is equal ‘n’, but this change has no effect on
 in both functions is pure coincidence. We could

}

ut Let’s define:

e it

 {

 char olay = ‘m’;
 …
 func2(olay);

 …
 }

 void func2(char olay)
 {
 …
 olay++;

 …
 }

After olay is incremented in

lay in func1. The name ‘olay’o
have func2:

 void func2(char yalo)
 {
 …
 yalo++;
 …

and accomplished the same task.

B

void func2(char *)

Then us

 void func1()

{
 char olay = ‘m’;
 …
 func2(&olay); // give func2 the address of the variable olay
 …
 }

Chapter 8: C Pointers and Arrays

159

 …

d!’ as follows:

);
);

itializ

ns the array sending chars until it finds the ‘*’

 void func2(char *yalo)
{

 *yalo++; // the variable at address *yalo is incremented
 …
 }

This time func2 increments olay in func1 and olay becomes ‘n’ in both.

Arrays

Arrays are groups of consecutive objects. We could write a code fragment for
responding to a ‘?’ by sending each character of ‘Hello Worl

 if (val=='?')

 {
 sendchar('H');

'e'); sendchar(
 sendchar('l');
 sendchar('l');
 sendchar('o'
 sendchar(' '

 sendchar('w');
 sendchar('o');

 sendchar('r');
sendchar('l');

 sendchar('d');
 sendchar('!');
 sendchar('\r');

 }

Looks like a group of consecutive objects to me. Formally, we would define and
in an arre ay for this in C as:

char greet[] = "Hello, world!\r*";

And write a function that sca

void SayHowdy()
{

Chapter 8: C Pointers and Arrays

160

inter
rrays, but they

e mu grammers (and those of us with
pidly an issue in microcontrollers, and
inter rn how pointers and arrays relate and apply it in

n faster. Let’s look at some examples.

.

y[6];

ts as s bytes sized memory locations, since each

e‘ve

howdy[0] = ‘h’;
;
;

e the array:

,’\0’};

char greet[] = "Hello, world!\r*";

for(int i =0 ; greet[i] != '*'; i++)
{
 sendchar(greet[i]);
}

}

ng relation in C. Any array-subscripting operation Po s and arrays have a stro
can also be done with pointers. Pointers are said to be faster than a
ar ch harder to understand for novice pro

 diminishing brain cells). Since speed is ra
po s are faster we need to lea
code segments that must be made to ru

h char owdy[6];

Sets aside an array of six contiguous byte-sized memory locations

 int howd

ide an array of twelve contiguouSe
int requires two bytes of memory.

W seen before how to assign data:

 howdy[1] = ‘o’
 howdy[2] = ‘w’
 howdy[3] = ‘d’;
 howdy[4] = ‘y’;
 howdy[5] = ‘\0’;

 or we can do this when we defin

 char howdy[] = {‘h’,’o’,’w’,’d’,’y’

Here’s a puzzle for you:

 char *confuseus;
 char c;

Chapter 8: C Pointers and Arrays

161

ht, ‘y’ the 4th element of the howdy array. If it

pointer
char c; // create a char variable;

confuseus to point to the howdy array;
// set it to point to howdy[4]

lear?
kay, w

1 now equals ‘o’ and c2 equals ‘i’.

e can express the array position using pointers:

usmore;

 c1 = howdy[i]; // c1 = ‘y’ using array notation

 confuseus = &howdy[0];

confuseus += 4;
 c = *confuseus;

No tricks, what does c equal? Rig

asn’t clear, try it with comments:w

char *confuseus; // create a char

confuseus = &howdy[0]; //set
confuseus += 4;
c = *confuseus; //set the contents of c to the contents of howdy[4]

C

hat about: O

char c1, c2;

 c1 = *(confuseus + 1);
 c2 = *confuseus + 1;

c

Groan.

For c1 we added 1 to the address of confuseus before we dereferenced it with the
indirection operator. For c2 we dereferenced it, making it equal to ‘h’ then we
added 1 to ‘h’ NOT the address, making it equal the char numerically following
‘h’, which is ‘i’.

Double groan.

W

 int i = 4;
 char c1,c2;
 char* confuse

Chapter 8: C Pointers and Arrays

162

 c2 = *(howdy + 4); // c2 = ‘y’ using pointer notation

seusmore = &howdy[i]; // confuseusmore points to ‘y’
seusmore = howdy + i - 1; //confuseusmore points to ‘d’

o test this, make a new directory Pointer Array Test, copy the stuff from PC
Demonstrator.c to:

useusmore(void);

brate the oscillator:
 OSCCAL_calibration();

har s[])

 confu
 confu

T
Comm directory. Change the

// Demonstrator.h Pointer Array Test version

void initializer(void);
void Test(void);
void SayHowdy(void);
void Confuseus(void);
void Conf

void parseInput(char *);

Change the Demonstrator.c to:

// Demonstrator.c Pointer Array Test version

#include "PC_Comm.h"

void initializer()
{
 // Cali

 // Initialize the USART
 USARTinit();

 // say hello
 sendString("\rPointer Array Test.\r\r");

 Test();

}

void parseInput(c
 {
 // Do nothing in this test
}
oid Test() v
{

// The hard way
sendChar('H');

Chapter 8: C Pointers and Arrays

163

sendChar('l');

char greet[] = "Hello, world!\r*";

=0 ; greet[i] != '*'; i++)
{

y','\0'};

 ate a char pointer

int to howdy[4]

sendChar('e');
sendChar('l');
sendChar('l');
sendChar('o');
sendChar(' ');
sendChar('w');
sendChar('o');
sendChar('r');

sendChar('d');
sendChar('!');
sendChar('\r');

SayHowdy();

 Confuseus();

 Confuseusmore();

}

 void SayHowdy()
 {

 sendString("\rIn SayHowdy()\r");

for(int i

 sendChar(greet[i]);

}
}

void Confuseus()
{
 char howdy[] = {'h','o','w','d','

har *confuseus; // crec
 char c; // create a char variable;
 char c1, c2; // and a couple more

 sendString("\rIn Confuseus()\r");

 confuseus = &howdy[0]; // set confuseus to point to the howdy array;
 confuseus += 4; // set it to po

c = *confuseus; // set the contents of c to the contents of howdy[4]
 sendString("c = *confuseus; = ");
 sendChar(c);
 sendChar('\r');

 confuseus -= 4; // reset the pointer
 c1 = *(confuseus + 1);

Chapter 8: C Pointers and Arrays

164

confuseus + 1); = ");

 howdy[] = {'h','o','w','d','y','\0'};

i]; // c1 = 'y' using array notation
sendString("c1 = howdy[i]; = ");

confuseusmore = &howdy[i]; // confuseusmore points to 'y'
i]; =);

ts to 'd'

sendChar(*confuseusmore);

 sendString("c1 = *(
sendChar(c1);

 sendChar('\r');

 c2 = *confuseus + 1;
 sendString("c2 = *confuseus + 1; = ");
 sendChar(c2);
 sendChar('\r');

 }

void Confuseusmore()
{
 char
 int i = 4;
 char c1,c2;

char* confuseusmore;

 sendString("\rIn Confuseusmore()\r");

 c1 = howdy[

 sendChar(c1);

sendChar('\r');

c2 = *(howdy + 4); // c2 = 'y' using pointer notation
sendString("c2 = *(howdy + 4); = ");
sendChar(c2);

 sendChar('\r');

 sendString("confuseusmore = &howdy["
 sendChar(*confuseusmore);

('\r'); sendChar

 confuseusmore = howdy + i - 1; // confuseusmore poin
 sendString("confuseusmore = howdy + i - 1; = ");

 sendChar('\r');

}

Chapter 8: C Pointers and Arrays

Confuseusmoreandmoreandmore. Enough is t uch. Let’oo m s look at a practical

 5. The
if it isn’t

ple from the AVR port of the Butterfly code. Real
oftware from real working programmers:

example:

 int stringLength(char *string)
 {
 for(int i = 0; *string != ‘\0’; string++) i++;
 return i;
 }

Calling stringLength(howdy) or stringLength(&howdy[0]) both return
stringLength function compares the character in the string with ‘\0’ and

at character then it increments the string pointer and the length count and loops. th
Simple, easy and straightforward.

Let’s look at a practical exam
s

165

Chapter 8: C Pointers and Arrays

166

 Function name : ReadEEPROM

r to string, number of bytes to read,
 address in EEPROM

EEPROM
**************************/

uffer, char num_bytes, unsigned int EE_START_ADR)

eters

his function is to read data from the EEPROM. The parameter list
cludes a pointer to a string, ‘char *pBuffer’, the number of bytes to read, ‘char

address for the EEPROM, ‘EE_START_ADR’

ough space for the requested number of
OM with a pointer to the string, along with the
rting address of the EEPROM. The LoadEEPROM

for each pass the function eeprom_read_byte_169 is
e starting address of the EEPROM as a parameter, this
turns it so it can be put in the pBuffer array.

s:

ROM
ndexps, EEPROM_START + 1);

om vc

00

];

/
*

* Returns : None
 Parameters : Pointe*

* Purpose : Write byte(s) to the

void LoadEEPROM(char *pB
 {
 unsigned char i;
 for (i=0;i<num_bytes;i++) {

EE_START_ADR); // Load param pBuffer[i]=eeprom_read_byte_169(&
 EE_START_ADR++;
 }
}

e purpose of tTh

in
num_bytes, and the starting

The caller sets up a string buffer with en
bytes and calls LoadEEPR
requested length and the sta
function runs a loop and
called with the address of th
function gets the byte and re

This function is used in vcard.c as follow

// Load name from EEP
LoadEEPROM(Name, i

using these declarations:

fr ard.h

 #define STRLENGHT 25
OM_START 0x1#define EEPR

at head of vcard.c:
uint8_t inde
har N

xps = 0;
c ame[STRLENGHT

Chapter 8: C Pointers and Arrays

167

uires that the user never ask for more
What if we set indexps = 50? The

rray and the 25 bytes of RAM
sn’t allocated to this function

 of knowing what’s supposed to be stored there, but we overwrite

rray size
s

, EEPROM_START + 1);

rror ssag

o why bother adding
he code size and is a
 make will often be

 Stacks and Queues (Circular Buffers)

ers frequently use the stack when calling
routines and running algorithms.

acks
shwas
ttom trays never get used. It is important to us that the we never try to use the

aks down and
C uses a stack

fo’ to refer to these kinds of

This is a perfectly good function, but it req

ay. bytes than the size of the pBuffer arr
LoadEEPROM will fill the Name[STRLENGHT] a

rray. Since the second 25 bytes wathat follow the a
 have no waywe

it anyway and almost certainly cause havoc.

It would be good programming practice to add a line that checked the a
and the number of bytes before calling the LoadEEPROM function, and if there’

ate an error. a problem gener

if(NAMESIZE >= indexps){

 // Load name from EEPROM
me, indexpsLoadEEPROM(Na

}
lse e

 bytes requested > E Me e(“LoadEEPROM error: number of
array size”);

But we are smart and we’d never make such a dumb error, s

 increases tthe extra code that only slows things down and
pain to type? The obvious answer is that the mistakes we
painfully dumb.

F and LIFOs:IFOs

Stacks

sembly language programmAs
bsu

St are like those piles of trays in cafeterias, we take trays off the top and the

her piles them back on the top. The top trays are usually wet and the di
bo
tray below the bottom tray because it doesn’t exist, the analogy bre

e have a blown stack, as shown earlier when we discussed how w
when calling functions. Sometimes you’ll see ‘fi

Chapter 8: C Pointers and Arrays

168

ometimes

char myStack[STACKSIZE]; // create a data stack
kCount = 0;

unsigned char myValue = 0; // create a byte variable

ntrolling

ack

else

w your stack! - overflow”);

olling

ow itvin the other directon
 myValue = *--myStack;

y. A circular buffer is
ore like a game of hot potato where the students form a circle and pass a hot
toto from one to the next and it keeps circulating indefinitely around. The hot

potato in our analogy is actually the pointer to the next address in the queue. For
real students it would probably be a joint or a bottle of cheap alcohol.

 #define QUEUESIZE 100

 unsigned char myQueue[QUEUESIZE]; // create a queue
 unsigned char *nextInQueue; //define a pointer to an unsigned char
 char queueCount = 0;
 unsigned char myValue = 0; // create a byte variable

 NextInQue = myQueue; // set pointer

 // Do some controlling

stacks, fifo stands for ‘first in first out’. In control applications it is s
convenient to have fifos, private stacks, to manipulate data.

 #define STACKSIZE 100

 unsigned

char stac

 // Do some co

// push a byte on the st
 if (stackCount++ < STACKSIZE) // don’t blow your stack

 *myStack++ = myValue;

 error(“You almost ble

 // Do some more contr

// pull a byte off the stack
 if(stackCount-- > 0) //don’t bl

 else
 error(“You almost blew your stack! - underflow”);

Queues (Circular Buffers)
If stacks are like lunchroom trays, then queues are like the line of students waiting
to get a tray. The last one in line is the last one to get a tra
m
po

Chapter 8: C Pointers and Arrays

169

 myValue; //load myValue and incr pointer
}

controlling

s that pStateFunc is a pointer to a function that takes a char as a
rame shed.

n(char);

dChar;

 sendChar = ‘!’;

 // Put a byte in the queue
if(queueCount++ < QUEUESIZE)

 *nextInQueue++ = myValue;//load myValue and incr pointer
 else{ // circle the buffer
 nextInQueue = myQueue; // reset pointer
 queueCount = 0; // reset counter

 *nextInQueue++ =

// Do some more

 // Get the oldest byte from the queue
 if(queueCount < QUEUESIZE)
 myValue = *NextInQue + 1;
 else // we’ve reached the end so circle around
 myValue = myQueue[0];

Function Pointers
Functions are not variables, but we can define pointers to them anyway. The
question is: ‘why would we want to?’ The answer is that sometimes it is
convenient to keep a list of functions that we can choose based on the functions
position in the list. (Uhhh…….)

We can declare a pointer to a function as follows:

 char (*pStateFunc)(char);

hich sayw
pa ter and returns a character when fini

f we have another function declared: I

 char anotherFunctio

We can set the pointer as follows:

pStateFunc = anotherFunction;

Now:

char returnChar, sen

Chapter 8: C Pointers and Arrays

170

Char);

 same.

his may seem about as useful as a bicycle for fish, but you’ll see a good example
of tate machines (oooh, oooh, I can hardly wait), in the

 ideal language for solving complex data processing and scientific
tist has made a living being clever

ost any complex

e
T’ to see what I mean. Even
u aren’t likely to develop a

r pointer discussion to be ‘advanced’ and beyond the needs
f our study. Take a look at the last half of K&R’s chapter on Pointers and Arrays

 returnChar = anotherFunction(send

returnChar = pStateFunc(sendChar);

oth calls work exactly theb

T
in our discussion s
meantime, try to hold this in your head until we get there.

Complex Pointer and Array Algorithms
 is anC

computing problems. Many a computer scien
nd publishing the results. Which is good for us, because alma

problem we will come across has already been solved for us. Whether its sorting a
database or doing a really fast Fast Fourier Transform, the algorithm will b
published somewhere convenient. Try googling ‘C FF
f you have lots of time and enjoy solving puzzles, yoi

better solution than you can borrow. It’s your call.

I hereby declare furthe
o
and you’ll thank me.

Chapter 8: C Pointers and Arrays

171

ory, is much cheaper to make, so there is usually

 lot more ROM than RAM. The AVR microcontrollers have a type of memory
etween RAM and ROM called Flash ROM. It

using special hardware and software

for parameters and return addresses and to store arrays,
mong other things. [The AVR is a special case in that it has 32 general purpose

rams for AVR devices with no ‘RAM’, but that’s
nother story.]

hen we define an array of constants we should be able leave it in ROM, since
’t need to change them. But our C compiler

have lots of constant data in arrays,
ing and tone data for songs, we are

t of RAM.

of how to store a string and an array in flash ROM,
nd keep it there:

r RROR_ D[] PROGMEM = "You fouled up beyond

MEM modifier is not C and is specific to the WinAVR compiler. The
VR has special Load Program Memory, LPM, instructions to get data from the

Projects

Messenger

Arrays in RAM and ROM

Microcontrollers have limited memory, especially RAM, Random Access
Memory. ROM, Read Only Mem
a
that is somewhat intermediate b
functions like ROM, but can be rewritten
functions.

RAM is like money and beauty, you can never have too much of it, but in
microcontrollers you can often have too little: alas, microcontrollers are ugly and
poor. C programs require RAM. You can write assembly programs that can be
burned into ROM, and run on microcontrollers that have no RAM, but C requires
RAM to keep a stack
a
registers that can be used as RAM for very tiny and carefully written C programs,
so it is possible to write C prog
a

W
the elements are constants and we won
puts arrays in the data section of RAM. If we

conversion factor tables, or timsay strings, or
 tgoing o needlessly lose a lo

The following is an example
a

const cha E YOUFOOBARE
repair.\r\0";

The PROG
A

Chapter 8: C Pointers and Arrays

172

d this out for you by
ending them some money at: http://www.sourceforge.net/donate.

erminates if the byte is '\0' or if i = 60.
 is 'null' and terminates C strings

s too much overrun if we get a bad pointer
the string size

byte(&pFlashStr[i]) && i < 60; i++)

 sendChar(pgm_read_byte(&pFlashStr[i]));

stant character pointer as an argument. We can send a

amed array. (Aren’t you glad I didn’t say
ponymous array’?).

he first time I saw an array of pointers to arrays I thought somebody was either
 to obfuscate the code for job security. But I’ve learned

ful programming technique.

flash ROM, but this is not C and needs to be wrapped with some code to make its
use C-like, which is what the PROGMEM does. The details get more complex
than we want right now so just thank the guys who figure
s

We send this string to the PC by defining a sendFString function:

// Send a string located in Flash ROM
void sendFString(const char *pFlashStr)
{
 uint8_t i;

 // The 'for' logic t
 // '\0'
 // The 60 prevent
 // and it limits
 for (i = 0; pgm_read_

{

 }
}

he function takes a conT
string as follows:

 sendFString(&ERROR_YOUFOOBARED[0]);

which explicitly shows that we are sending the address of the first element in the
array. Or we could use the simpler:

sendFString(ERROR_YOUFOOBARED);

which is exactly the same thing since the ERROR_YOUFOOBARED is a
constant character pointer to the so-n
‘e

Using an array of pointers to arrays.

T
putting me on or trying
that, complex as it sounds, it’s actually a use

Chapter 8: C Pointers and Arrays

173

onst char ERROR_YOUFOOBARED[] PROGMEM = "You fouled up beyond

 = "Situation normal, all fouled

ess!\r\0";
onst char ERROR_WHERE[] PROGMEM = "Where did you learn to program?\r\0";

 = "Read the freaking manual!\r\0";

onst char *ERROR_TBL[] = { ERROR_YOUFOOBARED, ERROR_SNAFUED, \

 that begins by outputting the following

 uled up beyond repair.

ER array: ‘Enter a ‘. Next we sent the
entially send 0 to 4 in this loop). Then we

Let’s define a set of arrays:

c
repair.\r\0";
onst char ERROR_SNAFUED[] PROGMEMc
up.\r\0";
const char ERROR_STOPTHEMADNESS[] PROGMEM = "Stop the madn
c
const char ERROR_RTFM[] PROGMEM

And then we define an array of pointers to arrays, initializing it with… pointers to
the arrays:

c

 ERROR_STOPTHEMADNESS, ERROR_WHERE, ERROR_RTFM };

ow Let’s specify that we write a programN

to HyperTerminal;

Enter a 0 for error message: You fo
Enter a 1 for error message: Situation normal, all fouled up.
Enter a 2 for error message: Stop the madness!
Enter a 3 for error message: Where did you learn to program?
Enter a 4 for error message: Read the freaking manual!

In the software we store these string arrays in addition to the error arrays:

const char ENTER[] PROGMEM = "Enter a ";
const char FOR[] PROGMEM = " for error message: ";
char c = '0';

Then we send the lot to HyperTerminal with the following loop:

 char c = '0';

for(int i = 0; i < 5; i++)
 {
 sendFString(ENTER);
 sendChar(c + i);
 sendFString(FOR);

 sendFString(ERROR_TBL[i]);
 }

HyperTerminal first receives the ENT

aracter ‘0’ + i, (this allows us to sequch

Chapter 8: C Pointers and Arrays

174

ter to the string array stored
osition. Okay, this is a bit complex so Let’s write
alking about.

e PC_Comm software so we can use this messenger
s the RAM that has up to now been wasted on
he old PC_Comm code after this).

senger, and copy from the PC_Comm directory the .c
e.

ecifically
PROGMEM = "\r\rYou are talking to the \0";
OGMEM = "'Messenger' demo.\r\r\0";

ND1[] PROGMEM = "\rYou sent: '\0";
ND2[] PROGMEM = "' - I don't understand.\r\0";

a ";
or error message: ";

PROGMEM = "You fouled up beyond

OGMEM = "Situation normal, all fouled

ADNESS[] PROGMEM = "Stop the madness!\r\0";
here did you learn to program?\r\0";
d the freaking manual!\r\0";

_YOUFOOBARED, ERROR_SNAFUED,
RROR_RTFM };

send the FOR message. And finally we send the poin
in the ERROR_TBL in the i p
some code to show what we’re t

The messenger software.

We are going to upgrade th
stuff in later code. This will save u

on’t use tconstant strings. (Note – d

Create a new directory, Mes
and .h files and the makefil

 Programmers Notepad create a new file Messages.h: In

// Messages.h

/ identify yourself sp/
const char TALKING_TO[]
const char WHO_DEMO[] PR

/ bad command /
const char BAD_COMMA
nst char BAD_COMMAco

"Enter const char ENTER[] PROGMEM =

onst char FOR[] PROGMEM = " fc

ED[] const char ERROR_YOUFOOBAR
repair.\r\0";
onst cc har ERROR_SNAFUED[] PR
up.\r\0";

PTHEMconst char ERROR_STO
onst cc har ERROR_WHERE[] PROGMEM = "W
const char ERROR_RTFM[] PROGMEM = "Rea

RORconst char *ERROR_TBL[] = { ER
ERROR_STOPTHEMADNESS, ERROR_WHERE, E

and save it in the Messenger directory.

Add to the PC_Comm.h file:

#include <avr/pgmspace.h>

Chapter 8: C Pointers and Arrays

175

d to the PC_Comm.c file:

Send a string located in Flash ROM
id se as Str)

inates if the byte is '\0' or if i = 60.

 pointer

60; i++)

on

he oscillator:
ation();

// Initialize the USART
USARTinit();

ions on PC

 '0';

void sendFString(const char *);

Ad

//
vo ndFString(const char *pFl h
{
 uint8_t i;

 // The 'for' logic term
 // '\0' is 'null' and terminates C strings
 // 6 vents too much overrun if we get a bad The 0 pre
 // and it limits the string size
 for (i = 0; pgm_read_byte(&pFlashStr[i]) && i <
 {
 se r(pgm_read_byte(&pFlashStr[i])); ndCha
 }
}

Change Demonstrator.h to:

// Demonstrator.h Messenger version

void initializer(void);
void parseInput(char *);
void showMessage(char);

Change Demonstrator.c to:

// Demonstrator.c Messenger versi

#include "PC_Comm.h"
#include "Messages.h"

vo

id initializer()

{
 // Calibrate t
 OSCCAL_calibr

 // Display instruct
 sendFString(TALKING_TO);
 sendFString(WHO_DEMO);

 char c =

Chapter 8: C Pointers and Arrays

176

 < 5; i++)

endFString(ENTER);
+ i);
(FOR);

}

) // 5 error messages

 showMessage(s[0]);

acter
[0])

:
=='e')&&(s[2]=='m')&&(s[3]=='o')&&(s[4]=='?'))

dFString(WHO_DEMO);
reak;

1);
 sendChar(s[0]);
 sendFString(BAD_COMMAND2);

0';
}

d sh

&mess);

R_TBL[num]); // Send the song title to the PC

inal you will see:

to the 'Messenger' demo.

 for(int i = 0; i
 {
 s
 sendChar(c

ng sendFStri
 sendFString(ERROR_TBL[i]);
 }

void parseInput(char s[])
{
 if((s[0] <= '4') && (s[0] >= '0')
 {

 }
 else
 {
 // parse first char
 switch (s
 {
 case 'd'
 if((s[1
 sendFString(TALKING_TO);
 sen
 b
 default:
 sendFString(BAD_COMMAND

 break;
 }
 s[0] = '\

}

voi owMessage(char mess)
{

 int num = atoi(

 sendFString(ERRO

}

Compile, load to the Butterfly, and in HyperTerm

You are talking

Chapter 8: C Pointers and Arrays

177

d up beyond repair.
error message: Situation normal, all fouled up.

ter a 2 for error message: Stop the madness!
message: Where did you learn to program?
message: Read the freaking manual!

st it as follows:

o

at ed up.

 m?

t

understand.

s by saying again that this memory use is not about
controller and how to conserve limited RAM by
rtant to keep C and the microcontroller specific

ecause what we just learned works great on the
t work using other compilers for the

R, and is completely useless for other microcontrollers.

Enter a 0 for error message: You foule
En
n
ter a 1 for

E
Enter a 3 for error
ter a 4 for error En

Te

2
Stop the madness!
0
You f uled up beyond repair.
1
Situ ion normal, all foul
3

aWhere did you learn to progr
4
ead he freaking manual! R
5

You sent: '5' - I don't

Let me add a postscript to thi
C, it is about the AVR micro

ousing Flash ROM. It is imp
‘fixes’ separate in your head, b

 WinAVR compiler, but won’AVR using the
AV

Chapter 8: C Pointers and Arrays

178

oes anybody know what time it is? A Real Time Clock.

r
le real time clock. This was derived from the more capable

tim alibration makes the
sn’t

 real
as an nput that when the count reaches 32768, we will know

o
in

s is no accident since the
ep real time (well, ‘real’ to

ical
as a

 cerea thoug they n’t m hy.

loop to wait for the external crystal to

for(int i = 0; i < 10; i++)

erru .

ter 2 nable, TOIE2, bit in the
pt M , to disable the timer output

D

 our knowledge of interrupts with what we learned in the messengeLet’s combine
project to make a simp
clock in the Butterfly software.

A one second interrupt

e saw how to use the 32.768kHz watch crystal to calibrate the cpu clock W
oscillator in the chapter on ers and interrupts. While that c
oscillator accurate enough for communicating with the PC via the USART, it i

curate enough to keep time like a watch. We will use Timer/counter2 with ac
the watch crystal i so
that one-second has passed and can throw an interrupt allowing us to d

ls. Notice that 32768 is 0x8000 something at exact one second interva
hexadecimal and 1000000000000000 in binary, thi

s to ecrystals were designed to allow digital system k
humans anyway). The low speed (kilohertz verus mega or giga hertz) and
precision timing allowed watches more accurate than expensive mechan

ronometers to be manufactured so cheaply that its not unusual to find one ch
prize in a box of l, h are ilk proof and are a bit too crunc

e by using a delay We start the softwar
stabilize.

 _delay_loop_2(30000);

Disable global int pts

 cli();

Clear the Timer/Coun Output Interrupt E

nter 2 Interru ask Register, TIMSK2Timer/Cou
interrupt enable.

 cbi(TIMSK2, TOIE2);

Chapter 8: C Pointers and Arrays

179

peration AS2: Asynchronous Timer/Counter2, AS2
Register, ASSR.

= (1<<AS2);

lear the Timer/Counter 2, TCNT2, count register.

 TCNT2 = 0;

egister,
econd and 128*256 =
nd overflows once per

UB: Timer/Counter2 Update Busy and the TCR2UB:
r/Counter Control Register2 Update Busy bits of the, ASSR, to be cleared.

 | (ASSR & 0x04));

R2 = 0xFF;

mer/Counter 2 Output Interrupt Enable, TOIE2, bit in the Timer/Counter
, to enable the timer output interrupt enable.

bi(TIMSK2, TOIE2);

l interrupts.

ow the SIGNAL(SIG_OVERFLOW2) function will be called once per second
s shown in the code section) so we can use it to keep track of seconds.

Converting Computer Time to Human Readable Time

We can keep a count of seconds, but what good does it do us if our watch reads
40241? If the count started at midnight then this number of seconds would

Select Timer2 asynchronous o
bit in the Asynchronous Status

SR AS

C

elect the divide by 128 prescale factor in the Timer Counter Control RS
TCCR2A. The watch crystal pulses 32768 times in one s

ts to 256 a32768, so with a 128 prescaler, the timer coun
second.

 TCCR2A |= (1<<CS22) | (1<<CS20);

Wait for the TCN2
Time

 while((ASSR & 0x01)

Clear the Timer/Counter2 Interrupt Flags Register, TIFR2.

IF T

et the TiS
2 Interrupt Mask Register, TIMSK2

 s

inally, enable the globaAnd f

sei();

N
(a

Chapter 8: C Pointers and Arrays

180

 seconds after eleven in the morning.
nd that conversion is easy compared to the numbers you get if you set your

 years seventy-eight days six hours
urteen minutes and seven seconds later. So we are going to need to do some

t to something we can read.

binary numbers, say a count of the crystal beats, to decimal numbers, like you’d

mber with a range of 0 to 16. That’s one
f the r

us to s

ount

indicate that the time is ten minutes and 41
A
watch at thirty-three seconds after three twenty in the afternoon on May 11th of
2005 and you are reading the number two
fo
computing to convert the coun

We’ll briefly explore one way to convert time from byte sized data to ASCII text
strings that we can understand.

BCD - Binary Coded Decimal

Binay Coded Decimal is a coding trick that eases the storage and conversion of

want to display on a watch LCD. We can divide an 8-bit byte into two 4-bit
nibbles each of which can represent a nu
o easons for the use of hexadecimal notation discussed earlier. And it allows

re as single decimal integers, 0 to 9, in a nibble and two in a byte, one to
integer in each nibble.

If a the decimal number in a byte is less than 99, we can convert it to a BCD byte
using the following algorithm:

Set the initial byte (in C we use char) to some two digit value.

char initialbyte = 54;

Declare a variable for the upper nibble value.

 char high = 0;

C the tens in initialbyte.

 while (initialbyte >= 10)
 {
 high++;
 initialbyte -= 10;
 }

Chapter 8: C Pointers and Arrays

181

fter this runs the initialbyte now contains only the ones integer from the original
t is: high = 5 and intialbyte = 4. We

ombine the high and low nibbles to get the converted byte.

This al

onverting a byte to the ASCII equivalent decimal character using BCD.

tes Tens and Ones and a third byte, Number, which we set to a
alue in the range of 0 to 99.

ollowing char integer is a
mple increment of the previous one. Meaning that adding the number 4 to the

racter ‘0’, which is 48, yields the ASCII character ‘4’,
8+4 = 52 which is the ASCII decimal value of the character ‘4’). So the

get
e ASCII characters for Number.

0x0F) + '0';

A
byte and high char contains the tens, tha
c

convertedbyte = (high << 4) | initialbyte;

gorithm is used in the CHAR2BCD2 function in the software.

C

We define two by
v

char Tens = 0;
char Ones = 0;
char Number = 54;

We use the character to BCD algorithm written as the function
CHAR2BCD2(char) in the software section below to convert the Number to the
BCD equivalent in Tens.

 Tens = CHAR2BCD2(Number);

Now Tens has the BCD of the tens in the upper nibble and of the ones in the lower
nibble. We can convert this to an ASCII character for the integer by remembering
that the numerical value of ASCII ‘0’ is 48 and each f
si
value of the ASCII cha
(4
conversion of a decimal integer to its ASCII equivalent character is the simple
addition of 48 to the decimal integer.

Since the CHAR2BCD2 function loaded both the tens and ones parts of Number
into Tens, we need to extract the Ones and the Tens so that we can add 48 to
th

 Ones = Tens;
 Ones = (Ones &

Chapter 8: C Pointers and Arrays

182

ng the byte 4-bits, which we use as the ASCII
haracter offset.

e’ll use these ideas in the showClock function in the software.

he Real Timer Clock Software

encounter: uint8_t, which is WinAVR specific and
y we called ‘unsigned char’ and is the same as a byte.

reate .h files and the

 PROGMEM = "'Real Time Clock' demo.\r";

MEM = "\rYou sent: '";
onst I don't understand.\r";

const
const char TEXT_GET[] PROGMEM = "'get' to get the time and
date.\
onst to set the second";

MIN[] PROGMEM = "'minXX' to set the minute";
HOUR[] PROGMEM = "'hourXX' to set the hour";

onst char TEXT_TOXX[] PROGMEM = " to XX.\r";

pen Demonstrator.h and write:

Finally we get the Tens by right shifi
c

Tens = (Tens >> 4) + '0';

W

T

In the software you will
denotes what would normall

C a new directory, Real Time Clock, and copy the .c and
makefile from the Messenger directory.

Open Messenger.h in Programmers Notepad and write:

// identify yourself specifically
const char TALKING_TO[] PROGMEM = "\rYou are talking to the ";
const char WHO_DEMO[]

// bad command
onst char BAD_COMMAND1[] PROGc
c char BAD_COMMAND2[] PROGMEM = "' -

char ENTER[] PROGMEM = "Enter ";

r";
char TEXT_SEC[] PROGMEM = "'secXX' c

const char TEXT_
const char TEXT_
c

const char ERROR_NUMBER[] PROGMEM = "\rERROR - number must be
less than ";
const char ERROR_60[] PROGMEM = " 60.\r";
const char ERROR_12[] PROGMEM = " 12.\r";

const char THE_TIME_IS[] PROGMEM = "The time is: ";

O

Chapter 8: C Pointers and Arrays

183

Real Timer Clock version

Second(char *);

c and write:

version

nclud
#includ

unsigne
unsigne
unsigne

void in
{
 e oscillator:
 OSCCAL_calibration();

sendFString(TEXT_TOXX);

 sendFString(TEXT_MIN);
 sendFString(TEXT_TOXX);
 sendFString(ENTER);

// Demonstrator.h

void initializer(void);
void parseInput(char *);

void set
void setMinute(char *);
void setHour(char *);

char CHAR2BCD2(char input);
void RTC_init(void);

void showClock(void);
void setClock(void);

Open Demonstrator.

// Demonstrator.c Real Time Clock

#i e "PC_Comm.h"

"Messages.h" e

d char gSECOND;
d char gMINUTE;
d char gHOUR;

itializer()

ibrate th// Cal

 // Initialize the USART
 USARTinit();

 // Initialize the RTC
 RTC_init();

 // Display instructions on PC
 sendFString(TALKING_TO);
 sendFString(WHO_DEMO);
 sendFString(ENTER);
 sendFString(TEXT_GET);
 sendFString(ENTER);
 sendFString(TEXT_SEC);

 sendFString(ENTER);

Chapter 8: C Pointers and Arrays

184

sendFString(TEXT_HOUR);
sendFString(TEXT_TOXX);

'e') && (s[2] == 't'))

 case 's':
 if((s[1] == 'e') && (s[2] == 'c'))

);

n'))
(s);

 case 'd':

='m')&&(s[3]=='o')&&(s[4]=='?'))
ng(TALKING_TO);

 break;

}

void parseInput(char s[])
 {

 // parse first character
 switch (s[0])
 {

 case 'g':

 if((s[1] ==
 showClock();
 break;

 setSecond(s

 break;
 case 'm':
 if((s[1] == 'i') && (s[2] == '
 setMinute
 break;

 case 'h':
 if((s[1] == 'o') && (s[2] == 'u') && (s[3] == 'r'))
 setHour(s);
 break;

 if((s[1]=='e')&&(s[2]=

 sendFStri
 sendFString(WHO_DEMO);
 break;
 default:
 sendFString(BAD_COMMAND1);
 sendChar(s[0]);
 sendFString(BAD_COMMAND2);

}
 s[0] = '\0';

}

void s
{

etSecond(char s[])

 char str[] = {0,0,'\0'};
 int sec;

Chapter 8: C Pointers and Arrays

185

str[0] = s[3];

 sendFString(ERROR_NUMBER);
60);

{
 sendFString(ERROR_NUMBER);

char str[] = {0,0,'\0'};

r);

else
{
 sendFString(ERROR_NUMBER);

 str[1] = s[4];

 sec = atoi(str);
 if(sec <= 60)
 {
 gSECOND = (uint8_t)sec;

}
 else
 {

 sendFString(ERROR_

}
}

void setMinute(char s[])
{

'}; char str[] = {0,0,'\0
int min;

str[0] = s[3];

 str[1] = s[4];

 min = atoi(str);
 if(min <= 60)

{
 gMINUTE = (uint8_t)min;
 }
 else

 sendFString(ERROR_60);

}
}

void setHour(char s[])
 {

 int hour;

str[0] = s[4];
 str[1] = s[5];

hour = atoi(st
 if(hour <= 12)
 {
 gHOUR = (uint8_t)hour;

}

Chapter 8: C Pointers and Arrays

186

2);

 SL;

TE);

MH >> 4) + '0';

gSECOND);
) + '0';

sendFString(THE_TIME_IS);

 // Count tens

 ++;

 }

 return (high << 4) | input; // Add ones and return answer
}

 sendFString(ERROR_1
}

}

void showClock(void)
{

uint8_t HH, HL, MH, ML, SH,

 HH = CHAR2BCD2(gHOUR);

 HL = (HH & 0x0F) + '0';
 HH = (HH >> 4) + '0';

 MH = CHAR2BCD2(gMINU
 ML = (MH & 0x0F) + '0';
 MH = (

 SH = CHAR2BCD2(
 SL = (SH & 0x0F
 SH = (SH >> 4) + '0';

 sendChar(HH);
sendChar(HL);

 sendChar(':');
 sendChar(MH);
 sendChar(ML);
 sendChar(':');
 sendChar(SH);
 sendChar(SL);
 sendChar('\r');

}

// convert a character into a binary coded decimal chracter in the range
/ 0 to 99 resulting byte has tens in high nibble and ones in low nibble /
char CHAR2BCD2(char input)
{
 char high = 0;

 while (input >= 10)

 {
 high

 input -= 10;

Chapter 8: C Pointers and Arrays

187

nitialize Timer/counter2 as asynchronous using the 32.768kHz watch
 crystal.

 < 10; i++)

 cbi

 ASS

 TCN

TCC 1<<CS20);

gs

 sei // enable global interrupt

 //
 gSE
 gMI
 gHO
}

ne second interrupt from 32kHz watch crystal
GNAL(SIG_OVERFLOW2)

 gSECOND = 0;

 gMINUTE = 0;

 HOUR++; // increment hour

 if (gHOUR > 12)

/ i/
//
void RTC_init(void)
{
 // wait for external crystal to stabilise
 for(int i = 0; i
 _delay_loop_2(30000);

 cli(); // disable global interrupt

(TIMSK2, TOIE2); // disable OCIE2A and TOIE2

R = (1<<AS2); // select asynchronous operation of Timer2

T2 = 0; // clear TCNT2A

R2A |= (1<<CS22) | (
 // select precaler: 32.768 kHz / 128 = 1 sec between each overflow

 // wait for TCN2UB and TCR2UB to be cleared
 while((ASSR & 0x01) | (ASSR & 0x04));

 TIFR2 = 0xFF; // clear interrupt-fla
 sbi(TIMSK2, TOIE2); // enable Timer2 overflow interrupt

 ();

initial time and date setting
COND = 0;
NUTE = 0;
UR = 0;

 o//

SI
{
 gSECOND++; // increment second

f (gSECOND == 60) i

 {

 gMINUTE++; // increment minute

 if (gMINUTE > 59)
 {

 g

Chapter 8: C Pointers and Arrays

188

Using Real Time Clock:

After c

You ar
Enter
Enter
Enter
Enter

Get the current tim

conds past 12. Set the current time as follows:

get the correct time:

t

 {
 gHOUR = 0;
 }
 }

 }
}

ompiling and loading the code, in HyperTerminal you should see:

e talking to the 'Real Time Clock' demo.
'get' to get the time and date.
'secXX' to set the second to XX.
'minXX' to set the minute to XX.
'hourXX' to set the hour to XX.

e:

get
The time is: 12:00:03

Which initially should be a few se

c45 se

min4
hour11

n you can The

ge
The time is: 11:05:01
get
The time is: 11:05:12
get
The time is: 11:05:17

Chapter 8: C Pointers and Arrays

189

Music

to pillage the Butterfly code again and play some tunes to further
trate the use of pointers and arrays.

ngs are

,

t songs in flash

song variable. All nice
uite as C-like in the way it

 port of
chnical

e. But I won’t mention free. Especially not
is is a miraculous little free compiler (send them
eforge.net/donate.)

e port of the Butterfly code from not-free IAR compiler to the free WinAVR

mthomas@rhrk.uni-kl.de

d an outstanding job. When you finally learn enough to really evaluate the
utterfly code, you will come to appreciate the intelligence and hard work that

es, you. And for free. So when you
ple appearing song selection statement,

out

to my ears. “Play it again Sam.”

are going We
lusil

More on pointers to arrays

oIn the original Butterfly code written with the IAR compiler, in sound.c, s
selected using these definitions:

__flash int __flash *Songs[] = { FurElise, Mozart, /*Minuet
AuldLangSyne,*/ Sirene1, Sirene2, Whistle, 0};

int __flash *pSong; // pointer to the differen

The __flash is not C, it is a special IAR modifier that allows access to Flash ROM
as if it was regular C style RAM. In use:

pSong = Songs[song]; // point to this song

 the Loads pSong with the pointer to the tune indicated by
d C like. Unfortunately, the WinAVR compiler isn’t qan

allows access to Flash ROM. Not that I’m criticizing, I think the WinAVR
the gcc tools to the AVR platform is a miracle of dedication and te
prowess, not to mention: fre
repeatedly: free, free, free. So th

.sourcsome money at: http://www

Th
was done by:

Martin Thomas, Kaiserslautern, Germany

http://www.siwawi.arubi.uni-kl.de/avr_projects/

who di
B
this gentleman (my assumption) did for you. Y
see the way he translated the relatively sim
you can agree with his comment below: ‘// looks too complicated’, with
getting fussy about it.

Chapter 8: C Pointers and Arrays

190

sion of the definitions:

le, 0};

 actual

 fi it and
that I have the time or the skill. In

in C we sometimes have to dance lightly around

: we equate a constant integer pointer pointer to a cast
function pgm_read_word, which takes as a parameter

g element of the Songs[] array. What we are doing is
a function that knows how to extract a pointer to Flash
cated… but so what, it works.

 the song table in the Timer1 Input
is case is used to set the counter top value.

 taken from the Butterfly code and are based on a cpu clock
 of 2 MHz for the USART,

ut do not truly compensate for the difference.

equency for
 fo owing a. For

First look at his ver

// pointer-array with pointers to the song arrays
onst int *Songs[] PROGMEM = { FurElise, Mozart, Minuet,c
AuldLangSyne, Sirene1, Sirene2, Whist

const int *pSong; // mt point to a ram location (pointer array
Songs)

The __flash of the IAR compiler is replaced by the PROGMEM. And the
use is as follows:

 // mt pSong = Songs[song]; // point to this song
too pSong=(int*)pgm_read_word(&Songs[song]); // looks

complicated...

Yep, I agree: ‘// looks too complicated', but I have no intention to try to x
make it look more C-like. I doubt seriously
programming microcontrollers
ANSI C and use what works.

What the statement says is
of an integer pointer of the
the address of the son

nding this address to se
RAM. Looks too compli

Setting the frequency

Tones are setup by putting an integer from

ich in thCapture Register 1, ICR1, wh
The values are
running at 1 MHz. Since we are using a cpu clock
adjustments are made that help b

We select a base frequency of 220Hz (the A note) and calculate the fr
subsequent notes using the notes position on the musical scale ll
instance, C0 is 3 after A:

Chapter 8: C Pointers and Arrays

191

/ 2 = 1911

imer1 to generate a phase/frequency
We then compensate for our
sing a left bit shift of one

eft shifting a byte or integer doubles
is less than half the possible

lue, 256/2 for a byte.)

ew tones from the sound.h table:

 // tone 2

time we play the tone. The Timer0 calls
at 10ms intervals. It begins by getting the tempo from the
ay and putting it into a Tempo variable. The next time

d, if Tempo is not 0, it decrements the tempo and exits. It
the Tempo is 0, when it rereads the tempo and starts

 Tone = 220*2^(NOTE/12)

When NOTE = C0 we get:

 Tone = 220*2^(3/12) = 261.6256.

We get the frequency to generate for the tone with:

 Timer value = 1Mhz / Tone / 2

For the C0 we would have:

6... Timer value = 1000000 / 261,625

So when we want to generate a C0 we set T
correct PWM with a top value calculated as above.

value uusing a 2Mhz cpu clock by doubling the
position. (In case you didn’t get this earlier, l
it if there is headroom. Headroom means the value
va

 fA

#define a 2273 // tone 0
#define xa 2145 // tone 1
#define ax 2145 // tone 1
#define b 2024
#define c0 1911 // tone 3

Setting the tempo

po, in this case, is the length of The tem
the Play_Tune function
first position of the arr
Play_Tune is calle
continues to do this until
over.

Chapter 8: C Pointers and Arrays

192

tion

is the
 should be played. Play_Tune gets the

to the Duration variable and the Timer1
its. When called again by Timer0, if the
ed and the function exits leaving the tone
d to 0, Play_Tune gets the next set of

Duration and the timer and starts the next tone. If the Duration
es that the tune has been played through,

xt byte and if that byte is 1, it starts the tune over, if 0 it ends
une. Clever, eh?

ray – Fur Elise

e[] PROGMEM=

, 8,xd2, 8,e2, 8,b1, 8,d2, 8,c2, 4,a1,
 8 e1, 8,a1, 4,b1, 8,p, 8,e1, 8,xg1, 8,b1, 4,c2,

, 8,xd2, 8,e2, 8,xd2, 8,e2, 8,b1, 8,d2,
 8,c1, 8,e1, 8,a1, 4,b1, 8,p, 8,e1, 8,c2,

8,b1, 4,a1,
0, 1

 to make sound

e large black square on the back of the Butterfly. It
at deforms when electricity is applied to it (the

ation can be made at audio frequencies allowing
nd waves in the air. Our piezo-element is connected to
 the OC1A pin that can be configured as an output for

 Timer1 waveform generator. We will configure the Timer1 waveform
ill use PWM to generate tones.

Setting the dura

ed values in the table. The duration The duration and the frequency are pair
onelength of time that the following t

duration
and tone from the table and loads them in

e and then extop count. It starts the ton
Duration is not 0, Duration is decrement

 Duration is decrementeplaying. When
values for the
value read from the table is 0, this indicat

t checks the neso i
 tthe

An example song ar

const int FurElis
{
3,
8,e2, 8,xd2, 8,e2
8,p, 8,c1, ,
8,p, 8,e1, ,e8 2
8,c2, 4,a1, 8,p,

};

Using the Piezo-element

element is thThe piezo-
contains a sheet of material th
piezo electric effect). This deform
the element to produce sou

rtB pin 5, which is alsoPo
eth

generator so that it w

Chapter 8: C Pointers and Arrays

193

 to the piezo-element.

e initialize orm as follows:

l Register A, TCCR1A, so that the OC1A pin (PortB
nting and cleared when down counting.

 M1A1);

M with a top value in

e set the Output Compare Register 1 High to 0 and Low to the value in the

lue of Volume will produce a higher volume.

a imer1

CCR1B,
m , and the Input

apture e.

he song calls for a pause we stop Timer1, otherwise we start it

one) == p) | (pgm_read_word(pSong + Tone) == P))
0); // stop Timer1, prescaler(1)

sbi(TCCR1B, CS10); // start Timer1, prescaler(1)

ne value from the song array.

Initializing the Timer1 for PWM

W Timer1 to generate a PWM wavef

We set Timer/Counter Contro

in 5) w en up coup ill be set wh

 TCCR1A = (1<<CO

We set rrect PW the TCCR1B for phase and frequency co
ICR1.

 TCCR1B = (1<<WGM13);

e set the TCCR1B to start Timer 1 with no prescaling W

 sbi(TCCR1B, CS10);

W
Volume variable. A lower va

 OCRA1H = 0;
 OCRA1L = Volume;

ting the tone using PWM from TGener

Timer1 TWhen Play_Tune is called periodically by Timer0, we set the

h and Low registers, TCNT1H TCNT1Lthe Ti er/Counter1 Hig
C Register 1, ICR1H, which in this case is used to set the counter top valu

In Play_Tune:

 tIf

(pgm_read_word(pSong + Tif(
cbi(TCCR1B, CS1

else

n load the toWe the

Chapter 8: C Pointers and Arrays

194

porary variable and shift it right by 8
t that we
te for the

en a 1 MHz
as used in the original Butterfly code.

= 7;

lly top value low byte and adjust it for the 2 MHz clock.

e Timer0 interrupt calls the Play_Tune function every 10
 before:

re value

caler

 temp_hi = pgm_read_word(pSong + Tone); // read out the PWM-value

 so we get it into a temThe Tone is an integer,
bits and load that value into the high byte of the counter top. Excep

nsaactually only shift it right by 7 bits to adjust it (cut it in half) to compe
 2MHz system clock in this applications (for the USART) whuse of a

clock w

 temp_hi >>

We clear the Timer1 count.

 TCNT1H = 0;

 TCNT1L = 0;

We load the counter top value high byte.

 ICR1H = temp_hi;

Fina we load the counter

ICR1L = pgm_read_word(pSong + Tone);
ICR1L <<= 1;

Using the Timer0 interrupt to play a tune

 above thAs mentioned
ms. We set up the Timer0 much as we’ve seen

 // Enable timer0 compare interrupt
 TIMSK0 = (1<<OCIE0A);

 the compa // Sets
 OCR0A = 38;

 // Set Clear on Timer Compare (CTC) mode, CLK/256 pres

= (1<<WGM01)|(0<<WGM00)|(4<<CS00); TCCR0A

Chapter 8: C Pointers and Arrays

195

t again Sam Software.

d
gs

lay it again Sam, and copy the .c and .h files and the
er directory. From the WinAVR Butterfly port, bf_gcc

 sound.h. In Programmers Notepad, create a new
:

**

yte sets
empo. A high byte will give a low tempo, and opposite.

sts of two bytes. The first gives the length of
her gives the frequency. The frequencies for

ach tone are defined in the "sound.h". Timer0 controls the
po and the length of each tone, while Timer1 with PWM gives

the frequency. The second last byte is a "0" which indicates
the end, and the very last byte makes the song loop if it's

t's "0".

*** ***********************************?

mt ur Elise";
t r Elise";

__f
t

8,e2, 8,xd2, 8,e2, 8,xd2, 8,e2, 8,b1, 8,d2, 8,c2, 4,a1,
8,p, 8,c1, 8,e1, 8,a1, 4,b1, 8,p, 8,e1, 8,c2, 8,b1, 4,a1,

The Play i

For some reason, the Butterfly code commented out the songs Minuet an

angSyne, but the WinAVR version uses them, so we get to hear two sonAuldL
absent on the store-bought Butterfly.

Create a new directory: P

 the Messengmakefile from
directory copy sound.c and

nes.h and addC/C++ file, tu

// tunes.h

#include "sound.h"

Then copy the following from sound.c to tunes.h

/**********
*
* A song is defined by a table of notes. The first b
* the t
* Each tone consi
* the tone, the ot
* e
* tem
*
*
* "1", and not loop if i
*
*** ***********************

// __flash char TEXT_SONG1[] = "F
cons char TEXT_SONG1[] PROGMEM = "Fu

// lash int FurElise[] =
cons int FurElise[] PROGMEM=
{

3,
8,e2, 8,xd2, 8,e2, 8,xd2, 8,e2, 8,b1, 8,d2, 8,c2, 4,a1, 8,p, 8,c1, 8,e1, 8,a1, 4,b1,
8,p, 8,e1, 8,xg1, 8,b1, 4,c2, 8,p, 8,e1,

Chapter 8: C Pointers and Arrays

196

/__flash char TEXT_SONG2[] = "Turkey march";
EM = "Turkey march";

1, 16,e1, 4,g1, 16,a1, 16,g1, 16,xf1,
 16,b1, 16,xa1, 16,b1, 16,xf2, 16,e2,
,xf2, 16,e2, 16,xd2, 16,e2, 4,g2, 8,e2,
2, 16,xf2, 8,e2, 8,d2, 8,e2, 32,d2, 32,e2,
d2, 8,e2, 32,d2, 32,e2, 16,xf2, 8,e2, 8,d2,

ommented out by ATMEL - see their readme
ts all the songs ;-)
ROGMEM = "Minuet";

GMEM =

,d2, 8,c2,
xf1, 8,g1,

1, 2,a1,

};

MEM = "Auld Lang Syne";

=

, 8,c3, 4,c3, 4,e3, 2,d3, 8,c3, 4,d3, 8,e3, 8,d3,
, 4,e3, 4,g3, 2,a3, 8,p, 4,a3, 2,g3, 8,e3, 4,e3,

 2,d3, 8,c3, 4,d3, 8,e3, 8,d3, 2,c3, 8,a2, 4,a2, 4,g2,
 4,p,

0, 1
;

0, 1
};

/
const char TEXT_SONG2[] PROGM

//__flash int Mozart[] =
onst int Mozart[] PROGMEM = c
{

3,
16,xf1, 16,e1, 16,xd
16,g1,4,b1, 16,c2,
16,xd2, 16,e2, 16
8,g2, 32,d2, 32,e
16,xf2, 8,e2, 8,
8,xc2, 4,b1, 0, 1

};

// mt song 3 & 4 where c
// well, the gcc-geek wan
nst char TEXT_SONG3[] Pco

const int Minuet[] PRO
{

2,
4,d2, 8,g1, 8,a1, 8,b1, 8,c2, 4,d2, 4,g1, 4,g1, 4,e2, 8,c2,
8,d2, 8,e2, 8,xf2, 4,g2, 4,g1, 4,g1, 4,c2, 8

 8,c2, 8,b1, 8,a1, 8,g1, 4,8,b1, 8,a1, 4,b1,
8,a1, 8,b1, 8,g1, 4,b
0, 1

char TEXT_SONG4[] PROG

const int AuldLangSyne[] PROGMEM
{

3,
4,g2, 2,c3
2,c3, 8,c3
4,c3,
2,c3,

}

Chapter 8: C Pointers and Arrays

//__flash char TEXT_SONG5[] = "Sirene1";
const ch

197

ar TEXT_SONG5[] PROGMEM = "Sirene1";

//__flash int Sirene1[] =
 const int Sirene1[] PROGMEM =

{
0,
32,400, 32,397, 32,394, 32,391, 32,388, 32,385, 32,382,
32,379, 32,376, 32,373, 32,370, 32,367, 32,364, 32,361,
32,358, 32,355, 32,352, 32,349, 32,346, 32,343, 32,340,
32,337, 32,334, 32,331, 32,328, 32,325, 32,322, 32,319,
32,316, 32,313, 32,310, 32,307, 32,304, 32,301, 32,298,
32,298, 32,301, 32,304, 32,307, 32,310, 32,313, 32,316,
32,319, 32,322, 32,325, 32,328, 32,331, 32,334, 32,337,
32,340, 32,343, 32,346, 32,349, 32,352, 32,355, 32,358,
32,361, 32,364, 32,367, 32,370, 32,373, 32,376, 32,379,
32,382, 32,385, 32,388, 32,391, 32,394, 32,397, 32,400,
0, 1

};

//__flash char TEXT_SONG6[] = "Sirene2";
const char TEXT_SONG6[] PROGMEM = "Sirene2";

//__flash int Sirene2[] =
const int Sirene2[] PROGMEM =
{
 3,
 4,c2, 4,g2,
 0, 1
};

//__flash char TEXT_SONG7[] = "Whistle";
const char TEXT_SONG7[] PROGMEM = "Whistle";

//__flash int Whistle[] =
const int Whistle[] PROGMEM =
{

0,
32,200, 32,195, 32,190, 32,185, 32,180, 32,175, 32,170,
32,165, 32,160, 32,155, 32,150, 32,145, 32,140, 32,135,
32,130, 32,125, 32,120, 32,115, 32,110, 32,105, 32,100,
8,p, 32,200, 32,195, 32,190, 32,185, 32,180, 32,175,
32,170, 32,165, 32,160, 32,155, 32,150, 32,145, 32,140,
32,135, 32,130, 32,125, 32,125, 32,130, 32,135, 32,140,

Chapter 8: C Pointers and Arrays

198

// pointer-array with pointers to the song arrays
// mt: __flash int __flash *Songs[] = { FurElise, Mozart,
// /*Minuet, AuldLangSyne,*/ Sirene1, Sirene2, Whistle, 0};
const int *Songs[] PROGMEM = { FurElise, Mozart, Minuet,
AuldLangSyne, Sirene1, Sirene2, Whistle, 0};

//mt: __flash char __flash *TEXT_SONG_TBL[] = { TEXT_SONG1,

fferent songs in flash

 directory.

 file from the WinAVR port of the Butterfly code, bf_gcc
hanges, we’ll just steal the whole

ing.

ages.h file to:

nst = "\rYou are talking to the ";

32,145, 32,150, 32,155, 32,160, 32,165, 32,170, 32,175,
32,180, 32,185, 32,190, 32,195, 32,200,

 0, 0
};

// TEXT_SONG2, /*TEXT_SONG3, TEXT_SONG4,*/TEXT_SONG5, TEXT_SONG6,
// TEXT_SONG7, 0};
//// mt: 16 ram-bytes (8 words) "wasted" - TODO
//// PGM_P TEXT_SONG_TBL[] PROGMEM = { TEXT_SONG1, TEXT_SONG2,
// /*TEXT_SONG3, TEXT_SONG4,*/TEXT_SONG5, TEXT_SONG6, TEXT_SONG7,
// 0};
const char *TEXT_SONG_TBL[] = { TEXT_SONG1, TEXT_SONG2,
TEXT_SONG3, TEXT_SONG4, TEXT_SONG5, TEXT_SONG6, TEXT_SONG7, 0};

//__flash char PLAYING[] = "PLAYING";
const char PLAYING[] PROGMEM = "PLAYING";

//mt: int __flash *pSong; //pointer to the di
onst int *pSong; // mt point to a ram location (pointer array Songs) c

static char Volume = 80;
static char Duration = 0;
static char Tone = 0;
static char Tempo;

Save tunes.h to the Play it again Sam

Copy the sounds.h
directory to the Play it again Sam directory. No c
th

Change the contents of the mess

// identify yourself specifically
co char TALKING_TO[] PROGMEM

Chapter 8: C Pointers and Arrays

199

const char WHO_DEMO[] PROGMEM = "'Play it again Sam' demo.\r";

// bad command
nst sent: '";
nst "' - I don't understand.\r";

nst
1 for Fur Elise.\r";

H[] PROGMEM = "2 for Turkey march.\r";
 Minuet.\r";
"4 for Auld Lang

e.\r";
onst char TEXT_SIRENE1[] PROGMEM = "5 for Sirene1.\r";

#include "PC_Comm.h"

id i

lize piezo-element
 as output
 h

ions on PC

co char BAD_COMMAND1[] PROGMEM = "\rYou
co char BAD_COMMAND2[] PROGMEM =

co char ENTER[] PROGMEM = "Enter ";
const char TEXT_FUR_ELISE[] PROGMEM = "
const char TEXT_TURKEY_MARC
const char TEXT_MINUET[] PROGMEM = "3 for
const char TEXT_AULD_LANG_SYNE[] PROGMEM =
Syn
c
const char TEXT_SIRENE2[] PROGMEM = "6 for Sirene2.\r";
const char TEXT_WHISTLE[] PROGMEM = "7 for Whistle.\r";
const char VOLUME_UP[] PROGMEM = "+ to increase";
const char VOLUME_DOWN[] PROGMEM = "- to decrease";
const char THE_VOLUME[] PROGMEM = " the volume.\r";
const char STOP[] PROGMEM ="stop to stop the music.\r" ;

Change the Demonstrator.c to:

// Demonstrator.c PWM version

#include "Messages.h"

#include "tunes.h"

o nitializer() v
{
 // Calibrate the oscillator:
 OSCCAL_calibration();

 // Initialize the USART
 USARTinit();

 // Initialize timer0 to play a tune
 Timer0_Init();

// initia
 sbi(DDRB, 5); // set OC1A
 sbi(PORTB, 5); // set OC1A hig

 // Display instruct

Chapter 8: C Pointers and Arrays

200

sendFString(VOLUME_DOWN);

 // parse first character

 case '+':

 stopTune();

 sendFString(TALKING_TO);
 sendFString(WHO_DEMO);
 sendFString(ENTER);
 sendFString(TEXT_FUR_ELISE);
 sendFString(ENTER);
 sendFString(TEXT_TURKEY_MARCH);
 sendFString(ENTER);
 sendFString(TEXT_AULD_LANG_SYNE);
 sendFString(ENTER);
 sendFString(TEXT_SIRENE1);
 sendFString(ENTER);
 sendFString(TEXT_SIRENE2);
 sendFString(ENTER);
 sendFString(TEXT_WHISTLE);
 sendFString(ENTER);
 sendFString(VOLUME_UP);
 sendFString(THE_VOLUME);
 sendFString(ENTER);

 sendFString(THE_VOLUME);
 sendFString(ENTER);
 sendFString(STOP);

}

void parseInput(char s[])
{
 if((s[0] <= '7') && (s[0] >= '1')) // 7 tunes
 {
 startTune(s[0]);
 }
 else
 {

 switch (s[0])
 {

 volumeUp();
 break;
 case '-':
 volumeDown();
 break;
 case 's':
 if((s[1] == 't') && (s[2] == 'o') && (s[3] == 'p'))

Chapter 8: C Pointers and Arrays

201

fault:
 sendFString(BAD_COMMAND1);

oid volumeUp()

 OCRA1L = Volume;

}

void volumeDown()
{
 if(Volume < 11)
 Volume = 6;
 else
 Volume -= 50;

 OCRA1H = 0;
 OCRA1L = Volume;
}

void stopTune()
{
 cbi(TCCR1B, 0); // stop Playing
 TCCR1A =
 TCCR1B = 0;
 sbi(PORTB, 5); // set OC1A high

 break;
 case 'd':
 if((s[1]=='e')&&(s[2]=='m')&&(s[3]=='o')&& (s[4 =='?'))
 sendFString(TALKING_TO);
 sendFString(WHO_DEMO);
 break;
 de

 sendChar(s[0]);
 sendFString(BAD_COMMAND2);
 break;

 }
 s[0] = '\0';
}
}

v
{
 if(Volume >= 250)
 Volume = 250;
 else
 Volume += 50;

 OCRA1H = 0;

0;

Chapter 8: C Pointers and Arrays

202

Duration = 0;

hen upcounting, clear when downcounting
 TCCR1A = (1<<COM1A1);

CR1

OCRA1L = Volume;

 char loop;

}

void startTune(char tune)
{

 int song = atoi(&tune) - 1;

 stopTune();
 Tone = 0;
 Tempo = 0;

// Send the song title to the PC

 sendFString(TEXT_SONG_TBL[song]);
 sendChar('\r');

// looks too complicated..
 pSong=(int*)pgm_read_word(&Songs[song]);

 Sound_Init();
}

void Sound_Init(void)
{

// Set OC1A w

 // Phase/Freq-correct PWM, top value = I
 TCCR1B = (1<<WGM13);

 sbi(TCCR1B, CS10); // start Timer1, prescaler(1)
 // Set a initial value in the OCR1A-register
 OCRA1H = 0;

// This will adjust the volume on the buzzer, lower value
// =>higher volume

}

void Play_Tune(void)
{
 int temp_hi;

Chapter 8: C Pointers and Arrays

203

tion = 0;

 Duration = (DURATION_SEED/pgm_read_word(pSong+Tone));
 Duration <<= 1;// compensate for using 2 MHz clock
 Tone++; // point to the next tone in the Song-table

e

 if((pgm_read_word(pSong+Tone) == p)|
e) == P))

8 bits to the right

 / reset TCNT1H/L

 ICR1H = temp_hi; // load ICR1H/L
 ICR1L = pgm_read_word(pSong + Tone);
 ICR1L <<= 1; // compensate for using 2 MHz clock

 Tone++; // point to the next tone in the Song-table

 if(!Tone)
 {
 Dura

 Tempo = (uint8_t)pgm_read_word(pSong + 0);
 Tempo <<= 1; // compensate for using 2 MHz clock
 Tone = 1; //Start the song from the beginning
 }

 if(!Tempo)
 {
 if(Duration) // Check if the length of the tone has "expired"
 {
 Duration--;
 }
 else if(pgm_read_word(pSong + Tone))// If not the song end
 {
 // store the duration

 // if paus

 (pgm_read_word(pSong+Ton

 cbi(TCCR1B, CS10); // stop Timer1, prescaler(1)
 else
 sbi(TCCR1B, CS10); // start Timer1, prescaler(1)

 cli();

 // read out the PWM-value

 temp_hi = pgm_read_word(pSong + Tone);
 temp_hi >>= 7; // move integer

 TCNT1H = 0; /

 TCNT1L = 0;

 sei();

Chapter 8: C Pointers and Arrays

204

 else // the end of song

 point to the next tone in the Song-table

 else // if not looping the song

 0;
 cbi(TCCR1B, 0); // stop Playing
 TCCR1A = 0;
 TCCR1B = 0;
 sbi(PORTB, 5); // set OC1A high
 }

_t)pgm_read_word(pSong + 0);

 }

e the correct time-delays in the song

// Enable timer0 compare interrupt
 TIMSK0 = (1<<OCIE0A);

 re (CTC) mode, CLK/256 prescaler
 00)|(4<<CS00);
}

 }

 {
 Tone++; //

 // get the byte that tells if the song should loop or not
 loop = (uint8_t)pgm_read_word(pSong + Tone);

 if(loop)
 {
 Tone = 1;
 }

 {
 Tone =

 }

 Tempo = (uint8

 else
 Tempo--;

}

oid Timer0_Init(void) v
{
 // Initialize Timer0.
 // Used to giv

// Sets the compare value
OCR0A = 38;

// Set Clear on Timer Compa
TCCR0A = (1<<WGM01)|(0<<WGM

Chapter 8: C Pointers and Arrays

205

SIG L
{

Finally change Demonstrator.h to:

 parseInput(char *);

int parseTune(char *);
void startTune(char);

void volumeUp(void);
void volumeDown(void);
void stopTune(void);

void Sound_Init(void);
void Timer0_Init(void);

Using Play it again Sam:

This is what you should see in HyperTerminal, and an example of use:

You are talking to the 'Play it again Sam' demo.
Enter 1 for Fur Elise.
Enter 2 for Turkey march.
Enter 3 for Minuet.
Enter 4 for Auld Lang Syne.
Enter 5 for Sirene1.
Enter 6 for Sirene2.
Enter 7 for Whistle.
Enter + to increase the volume.
Enter - to decrease the volume.
Enter stop to stop the music.
4
Auld Lang Syne
1
Fur Elise

NA (SIG_OUTPUT_COMPARE0)

Play_Tune();
}

// Demonstrator.h PWM version

void initializer(void);
void

Chapter 9 – Digital Meets Analog – ADC and DAC

207

 Digital Meets Analog – ADC and

t First - A Debugging Tale
t follows, I liberally ‘borrowed’ code from the Butterfly,
ble style to allow a user from the PC to ask for a measure

oltage. All was well except for a tiny problem with the
oltage measurement. Tiny as in the first time I tried to measure voltage on the

Butterfly I destroyed it. Well destroyed is a bit harsh. It looks just like it always
so I had ordered six Butterflys
moky Joe since my favorite

n my hardware
p, legs in the air,

nted in the Dead Butterfly Museum.
ut Lepidopteron death is not what this is about. I eventually found that I had

t tale. Lets just say this event led me to becoming a bit paranoid about
hardware and I went forward on
ed with the ADC code.

 just fine,
and the

When que with: The
reading is 1.1 volts.

And pr PC. My response involved lots of
obscen the Butterfly
wasn’t destroy
‘volt’. My first assum
room. Sound
voltage eren ure the ambient room light to calibrate the

oltage erence before we measure volts. So I covered the light sensor and the

crewing things up. The USART uses a higher voltage than the Butterfly and they

Chapter 9 –
DAC
Bu
In the ADC project tha
dding my own inimitaa

of light, temperature, and v
v

did, but it doesn’t work. Fortunately I know myself
because, as I said elsewhere, my nickname is S
learning method is producing copious quantities of smoke i

rojects. The Butterfly didn’t smoke though. It just died. Belly up
ready for a pin thru the thorax to be box mou
B
done something unbelievably stupid and since you wouldn’t believe it, I won’t
relate tha
the voltage measurement part of the Butterfly
iptoes and slightly hyperventilating as I proceedt

My next version was able to read the light just fine, and the temperature
 voltage just one time.

I re sted: volt the hardware responded to HyperTerminal

omptly died
ities an

. No further responses to the
d complaints about flushing another $19.99, but
ed this time, it rebooted just fine and only crashed when I asked for

ption, reasonable I thought, was that it’s the light level in the
crazy? Well, it seems that the light sensor affects the Butterfly

 ref
 ref

ce and we have to meas
v
Butterfly still crashed. Then I went the other direction and put a bright light on it
to no avail. So I thought that if its all that sensitive to light derived voltages
maybe the USART traffic voltage is propagating about unpredictably and
s

Chapter 9 – Digital Meets Analog – ADC and DAC

208

ave included a voltage inverter circuit that looked like a prime candidate to
bine with a voltage on the Voltage In pin

h
radiate messy voltages that might com
and might, theoretically, cause a problem. So I changed PC_Comm so that it sent

minal I got: the PC a ‘!’ every time it received a character. In HyperTer

So after requesting ‘volt’ the Butterfly was no longer exclaiming with a ‘!’ but

ecided it wanted to play cards with a black club, or perhaps more reasonably, I
g scrambled on reception by the PC because the Baud rate

’ve seen that happen before). So I reread the data sheet on the
with the Butterfly schematics and tried a few coding

ill no fix. I messed with the USART initialization
on function, the ADC read function, the oscillator

r

in front of a line) to see
ventually I got to the getVolt function and

ch time you
nt something out, you have to recompile, load, and test the code. It takes a

0'};

d
thought, the ‘!’ was bein
had changed (I
USART and diddled
changes. Hours passed and st

ializatifunction, the ADC init
calibration function and generally had myself a merry old goose chase for about
half a day. Nothing fixed the problem, but at least the Butterfly didn’t explode no

stently responding with a blackmake the least bit of smoke, the code was consi
club rather than the ‘!’ but at least it was running.

Finally, in total desperation, I tried what I should have tried in the first place. I

racketed code by commenting out sections (putting // b
where exactly the problem occurred. E
started commenting out sections. This is a time consuming process, ea
comme
while. So here is the getVolt code:

void getVolt()
{

char voltintpart[]= {''0','\
 char voltfractpart[]= {'0','\0'};

int intpart = 0;
 int fractpart = 0;
 int ADCresult = 0;

 ADCresult = ADC_read();
 intpart = ADCresult/50;

Chapter 9 – Digital Meets Analog – ADC and DAC

209

 itoa(fractpart, voltfractpart, 10);

 // Send the voltage to the PC

 logical part and still nothing worked. Finally, because there

s nothing logical to try, I commented out the itoa functions. And the Butterfly
Also, it started returning ‘!’ rather than the black club for

dn’t return the correct voltage, because I

e end of Chapter 6. Guess what? They

Later

{''0','\0'};

 They work just fine in the original Butterfly
e hard way that if you assign memory to an

ray and then foolishly write beyond that memory, say to voltintpart[2], the third
ents you will in fact write to the byte

in ry that follows the array bytes which may not cause a problem if nothing
om the ASCII code for an

char voltintpart[]= {'0','0',0','\0'};

 fractpart = ADCresult%50;

 itoa(intpart, voltintpart, 10);

 sendString("The reading is ");
 sendChar(voltintpart [0]);
 sendChar('.');
 sendChar(voltfractpart [0]);
 sendString(" volts.\r");
}

I c
a
ommented out each

w
no longer messed up.
each character I sent it. Of course, it di
wasn’t converting it to ASCII, but it was running fine otherwise and correctly
returned the light and temperature. The itoa function is in the standard library, so I
assumed that it must have a problem. I changed it to the itoa function (and the

 wrote at thother support functions) that we
so fail! I went for a long walk. al

, after more staring at the function I noticed:

 char voltintpart[]=
 char voltfractpart[]= {'0','\0'};

lem, can they?These can’t be the prob
code. But many years ago I learned th
ar
el t of the array which only has two elememen

 memo
else is using that byte, or it might just change it fr

tended ASCII code for a black club. So I explanation point to the Microsoft ex
enlarged them to:

 char voltfractpart[]= {''0',0','0','\0'};

And the code works just fine.

Chapter 9 – Digital Meets Analog – ADC and DAC

210

id enough to send it an array that
as too small, and if they are that dumb, they deserve what they get. C is fast,

 was designed to take out some of the meanness by forcing
atures that protect the programmer from himself, but this was done at the

ly won’t be using C to write programs for windows based programs on a
 where you’ve got plenty of hardware speed and memory and high level

d speed and memory,
 that the arguments for the

choose

Debugg
deadlin
enough
and pa
will dri
underst
C prog

 te shingles on roofs
 I understand that alcohol also helps as does having an obsessive-

pulsive disorder. Speaking of which, Let’s move on to the next project.

nalo

igital Conversion?

gital
 of bringing up Heraclitus and Democritus and the

al nature of reality: is reality made of a
ntinu or of bits of multiple things (digital). He
ook

some s

Why, you may ask, didn’t the designers of the standard library require the itoa
function to check the size of the array before using it? Good question. My guess is
that the standard library functions were written to be as fast and small as possible.
They also likely assumed nobody would be stup
w
small, and mean. C++
fe
expense of size, speed, and simplicity. Other higher-level languages provide even
more protection and are even larger, slower, and more complex. You almost
certain
PC
development tools, but for microcontrollers with their

fs. I acknowledge
limite

C probably has the best set of tradeof
choice of a programming language borders on the religious, so I say that if you

 not to use C, you will be eternally damned.

ing can be a maddeningly frustrating process, especially if you are on a
e. I spent half a day finding this problem. I didn’t make my array large
. HALF A DAY! Am I stupid? No, I’m not. This kind of debugging is part
rcel of working with microcontrollers. If you have the wrong attitude, you
ve yourself nuts trying to find these bugs. What is the right attitude? It is to
and that you have to be really smart, work very hard, and know a lot about
ramming and microcontrollers to make a mistake this dumb. You have to
lling yourself over and over: “This is better than putting keep

in the summer.”
com

A g to Digital Conversion

What is Analog to D

y EE professors about Analog to DiDuring a discussion with one of m
Conversion, I made the mistake
ancient debate about the fundament

um of a single thing (analog)co
sh his head, as my profs often did, and said, “Son, I don’t give a damn what

heep header said 3,000 years ago, this IS an analog world!” Humpf! I say it

Chapter 9 – Digital Meets Analog – ADC and DAC

211

depend s
analog is
change
atomic,
step in
way.

ng his head, said, “Son, a difference that
hat

p there in philosopher heaven Heraclitus and Democritus
 each other a big hug.

e wa lue
hatev

ways t d
weaknesses, we will examine successive approximation since that is what the

s on your perspective. To electronics, Heraclitus was right and the world i
and you can’t step in the same river twice since the only constant

. To computers, Democritus was right, the world is digital (well, he said
 but it’s the same thing philosophically speaking) and you can theoretically
the same river twice if you arrange the atoms (bits) of the river the same

rofessor of mine, also shakiAnother p

akes m no difference is no difference!” So Let’s drop this right here and say t
e want to control is analog and the world we will use to control it is the world w

digital, and somewhere u
can give

Analog to Digital Conversion by Successive Approximation

W nt to measure voltage, and in the real world, voltages can be any va
w er, they represent a continuum of electromotive force. There are many

e an analog signal to a digital value each having strengths ano conv rt

AVR uses.

10-bit DAC

Analog Input

Successive Approximation
Register

Analog
Comparator

Control Logic

Data Registers

Oscillator

Start Conversion

End Conversion

successive approximation ADC Figure Figure 27: 10-bit

Chapter 9 – Digital Meets Analog – ADC and DAC

212

f a successive approximation. This method
igital to analog converter. An analog

compar
AC (Digital to Analog Converter

 proportional to that number
we’ll

The
 output 1024 steps from 0 and its

that the DAC can produce is
 volts. We have 10-bits to play with so we can keep approximating in 0.00293

ltage to 1.234 volts. We use a binary
earch technique that starts in the middle and bisects each successive voltage. We

256 to reset it to 0.75
volt and get a 0 meaning that the DAC voltage is now lower than the input

-0.75 volts by sending 384 to the DAC output
. We keep successively approximating until we

etween1.233 and 1.236 volts. This is the best we can do

the ATMEGA169

uccessive approximation Analog to Digital
to an 8-channel analog multiplexer allowing connection to
 inputs on PortF. During conversion the voltage is held
and hold circuit. Look in the data book on page 195, figure

the voltage on
t significant bit). We can use an external

Figure 27 shows a simplified diagram o
uses an analog comparator and a d

ator, in this case, is a device that has two analog inputs one for the external
voltage and the other for the voltage from the D
that can accept a digital number and output a voltage
– examine these later). If the voltage on the DAC is lower than the external
voltage, the analog comparator outputs a 0, if it is higher it outputs a 1.
ATmega169 DAC is 10-bits, meaning that it can
maximum voltage.

Let’s look at the case where the maximum voltage
3.0
(3.0/1024) volt steps. Let’s set the input vo
s
start by bisecting the 3 volts by sending the number 512 to the DAC, which then
outputs 1.5 volts; the comparator will output a 1, meaning that the DAC voltage is
too high. So we bisect the 1.5 volts by sending the DAC

voltage. Next we bisect the 1.5
.215 volts and get a 0, too low1

find that the voltage is b
h 0.003 volt steps. wit

Analog to Digital Conversion with

s a 10-bit sThe ATmega169 ha
ected Converter conn

one of eight voltage
constant by a sample
82 for a block diagram of the ADC circuit.

The minimum value is GND and the maximum is determined by
the AREF pin (minus 1-bit in the leas
voltage reference attached to this pin, or we can tell the AVR to connect it to
either AVCC or to an internal 1.1 volt reference. This setup allows us to improve

 AREF to help noise immunity by connecting a decoupling capacitor to the

Chapter 9 – Digital Meets Analog – ADC and DAC

213

abilize the internal voltage reference. The Butterfly uses a 100 nF capacitor for

ls ADC0 – ADC7 on the Port F pins PF0 – PF7.
ected to an analog multiplexer that can connect any of the pins

isabled by setting/clearing the ADEN bit in the ADCSRA

en not in use.

nd ADCL. In

lue of a single conversion.

tart Conversion bit ADSC to start a conversion. This bit
he conversion is in progress and is cleared by the hardware
n completes.

le auto triggering by setting the ADC Auto Trigger bit, ADATE. The
e is determined by setting the ADTS2:0 ADC Auto Trigger Source

•
•
•
•
•
• Timer Counter Compare Match B

mer/Counter1 Overflow

st
this purpose.

 input channeThere are 8 analog
e pins are connThes

to the analog comparator. The channel is selected by setting the MUX0 – MUX4
bits in the ADMUX register.

abled/dThe ADC is en
(ADC Control and Status Register A). Since the ADC consumes power it is
recommended that you turn it off wh

The ADC readings are put in the ADC Data Registers ADCH a

the ADCL first, then the ADCH to ensure that both normal operation you read
registers contain the va

n ADC . A interrupt can be set to trigger when a conversion is complete

nversionStarting a Co

There are several ways to start a conversion.

rite a 1 to the ADC SW
stays high while t
when the conversio

You can enab

igger sourctr
bits in the ADCSRB register. The triggers can be:

Free Running mode
Analog Comparator
External Interrupt Request 0
Timer/Counter0 Compare Match
Timer/Counter0 Overflow

• Ti

Chapter 9 – Digital Meets Analog – ADC and DAC

214

• Timer/Counter 1 Capture Event

Conversion Timing

he successive approximations are clocked between 50kHz and 200kHz to get the
aximum resolution. You can use higher sampling rate frequencies, but you get

The first conversion
al conversions take 13 clock

Changing Channels

ging channels and voltage
referen lways wait till a conversion

com venient, read the data book

igital eduction

trical noise that affect the
curacy of the ADC. We can put the system to sleep to shut it up and then take
r AD ils in the data book.

The accuracy of the conversion will depend on the quality of the input signal. A
w recommendations:

• Filter out signal components higher than the Nyquist sampling frequency
(double the frequency of interest) with a low pass filter.

• Sampling time depends on the time needed to charge the sample and hold
circuit so always use a source with an output impedance of 10 kOhm or
less.

 Use only slowly varying signals.
l paths as short as possible.

T
m
lower resolution. The sampling rate is determined by the input clock and by a
prescaler value set in the ADPS bits of the ADCSRA register.
takes 25 clock cycles to initialize the hardware. Norm
cycles and auto triggered conversions take 13.5.

There are some complexities involved in chan

ces that lead to the recommendation that you a
plete before making a change. If this is inconis

and figure it out yourself.

D Noise R

The CPU and I/O peripherals can generate a lot of elec
ac
ou C readings in the quietened environment. Deta

Conditioning the Analog Input Signal

fe

•
• Keep analog signa
• Use the ADC noise canceller function.

Chapter 9 – Digital Meets Analog – ADC and DAC

215

• sed for digital output, don’t switch them
while a conversion is going on.
If any of the ADC port pins are u

Accuracy

The data book has some cursory discussion of the extremely dense topic of ADC
accuracy. Just be aware that in the accompanying project we don’t use any of
these recommendations, so take the accuracy of our measurements with a grain of
salt.

Chapter 9 – Digital Meets Analog – ADC and DAC

216

Projects

We will write code to allow us to use HyperTerminal to request a reading from the
light, temperature and voltage sensors of the Butterfly. You’ve already seen the
debugging tale above so you know how much fun I had writing this stuff, so enjoy
it or else.

Initializing the ADC

The Butterfly has the ATmega169 pin 62, (AREF) connected to a bypass capacitor
to help lessen noise on the ADC, so we set the ADMUX bits 6 and 7 to 0 to select
the 'use external reference' option. We use the ‘input’ variable to set the
multiplexer. to connect the ADC to pin 61 (ADC0) using the ADMUX register
(data book p 207).

 ADMUX = input; // external AREF and ADCx

Next we set the ADC Control and Status Register A. The ADEN bit enables the
ADC. The ADPSx bits select the prescaler.

 // set ADC prescaler to , 1MHz / 8 = 125kHz
 ADCSRA = (1<<ADEN) | (1<<ADPS1) | (1<<ADPS0);

ternal AREF and ADCx

 , 1MHz / 8 = 125kHz
 ADCSRA = (1<<ADEN) | (1<<ADPS1) | (1<<ADPS0);

 input = ADC_read(); // clear hairballs
}

Finally we take a dummy reading, which basically allows the ADC to hack up any

airballs before we take any real readings h

input = ADC_read();

void ADC_init(char input)
{
 ADMUX = input; // ex

 // set ADC prescaler to

Chapter 9 – Digital Meets Analog – ADC and DAC

217

while(!(ADCSRA & 0x10));

result (8 samples) for later averaging
ADCr += ADC_temp;

ADCr = ADCr >> 3; // average the 8 samples

Reading the ADC

We save power by turning off the voltage on the light and temperature sensors
when they are not used, so now we turn them on, in case they are being used.

sbi(PORTF, PF3);
sbi(DDRF, DDF3);

ext we enable the ADC. N

sbi(ADCSRA, ADEN); // Enable the ADC

Then we do another hairball clearing dummy read.

ADCSRA |= (1<<ADSC); // do single conversion

And we wait till the conversion is complete.

while(!(ADCSRA & 0x10));//wait for conversion done, ADIF flag
active

Now we repeat this 8 times for better accuracy.

 // do the ADC conversion 8 times for better accuracy

for(i=0;i<8;i++)
{

ADCSRA |= (1<<ADSC); // do single conversion

// wait for conversion done, ADIF flag active

ADC_temp = ADCL; // read out ADCL register
ADC_temp += (ADCH << 8); // read out ADCH register

// accumulate

}

We divide by 8, which conveniently is done by left shifting 3 bits. Weren’t we
lucky that we chose to do 8 samples and save processing time by avoiding a
division?

Chapter 9 – Digital Meets Analog – ADC and DAC

218

We turn the sensors off to save power.

 cbi(PORTF,PF3); // mt cbi(PORTF, PORTF3); // disable the VCP
 cbi(DDRF,DDF3); // mt cbi(DDRF, PORTF3);

And we disable the ADC and return the calculated value.

 cbi(ADCSRA, ADEN); // disable the ADC

 return ADCr;

Giving us the ADC_read function:

int ADC_read(void)
{
 char i;
 int ADC_temp;
 // mt int ADC = 0 ;
 int ADCr = 0;

 // To save power, the voltage over the LDR and the NTC is
 // turned off when not used. T is is done by controlling the
 // voltage from an I/O-pin (PORTF3)
 sbi(PORTF, PF3); // Enable the VCP (VC-peripheral)
 sbi(DDRF, DDF3); // sbi(DDRF, PORTF3);

 sbi(ADCSRA, ADEN); // Enable the ADC

 //do a dummy readout first
 ADCSRA |= (1<<ADSC); // do single conversion

 // wait for conversion done, ADIF flag active
 while(!(ADCSRA & 0x10));

 // do the ADC conversion 8 times for better accuracy
 for(i=0;i<8;i++)
 {
 ADCSRA |= (1<<ADSC); // do single conversion

 // wait for conversion done, ADIF flag active
 while(!(AD

 ADC_temp = ADCL; // read out ADCL register

 h

CSRA & 0x10));

Chapter 9 – Digital Meets Analog – ADC and DAC

219

 ADC_temp += (ADCH << 8); // read out ADCH register

 // accumulate result (8 samples) for later averaging
 ADCr += ADC_temp;
 }

 ADCr = ADCr >> 3; // average the 8 samples

 cbi(PORTF,PF3); // disable the VCP
 cbi(DDRF,DDF3); // mt cbi(DDRF, PORTF3);

 cbi(ADCSRA, ADEN); // disable the ADC

 return ADCr;
}

Light Meter

The Butterfly has a Light Dependent Resistor, LDR, connected to ADC channel 2.
The resistance of the LDR decreases as the light increases, so the voltage
measured will decrease as light decreases.
We write the getLight function:

void getLight()
{
 char light[]= {'0','0','0','\0'};
 i r

 // Initialize the ADC to the light sensor channel
 ADC_init(2);

 ADCresult = ADC_read();

 itoa(ADCresult, light, 10);

 // Send the temperature to the PC
 sendString("The light reading is ");
 sendString(light);
 sendString(" somethings.\r");

}

This is straightforward and returns a value for the light. The light units
‘somethings’ is a precise scientific measure that means: ‘I don’t have a clue as to

nt ADC esult = 0;

Chapter 9 – Digital Meets Analog – ADC and DAC

220

how the ADC value translates to light intensity’. I have no idea what the data
means other than the amount of light is inversely proportional to the data sent
back, just like it is supposed to be. I guess we could try to calibrate it in Lumens,
or furlongs or something… nah, Let’s move on.

Temperature Meter

We will measure the temperature in Fahrenheit and use an array of constants to
convert the value from a voltage to a temperature. The table is from the Butterfly
code.

// Positive Fahrenheit temperatures (ADC-value)
const int TEMP_Fahrenheit_pos[] PROGMEM =
{ // from 0 to 140 degrees

938, 935, 932, 929, 926, 923, 920, 916, 913, 909, 906, 902,
898, 894, 891, 887, 882, 878, 874, 870, 865, 861, 856, 851,
847, 842, 837, 832, 827, 822, 816, 811, 806, 800, 795, 789,
783, 778, 772, 766, 760, 754, 748, 742, 735, 729, 723, 716,
710, 703, 697, 690, 684, 677, 670, 663, 657, 650, 643, 636,
629, 622, 616, 609, 602, 595, 588, 581, 574, 567, 560, 553,
546, 539, 533, 526, 519, 512, 505, 498, 492, 485, 478, 472,
465, 459, 452, 446, 439, 433, 426, 420, 414, 408, 402, 396,
390, 384, 378, 372, 366, 360, 355, 349, 344, 338, 333, 327,
322, 317, 312, 307, 302, 297, 292, 287, 282, 277, 273, 268,
264, 259, 255, 251, 246, 242, 238, 234, 230, 226, 222, 219,
215, 211, 207, 204, 200, 197, 194, 190, 187,

};

void getTemperature()
{
 char fahr[]= {'0','0','0','\0'};

 int ADCresult = 0;

// Initialize the ADC to the temperature sensor channel

 and reads
e program space with a 16-bit (near) address,

int i = 0;

 //ADC_init(0);
 ADMUX = 0;//input;

ADCresult = ADC_read();

/* The pgm_read_word() function is part of WinAVR
a word from th

Chapter 9 – Digital Meets Analog – ADC and DAC

221

. When a table entry is found that is less
esult we break and i equals the temperature

in Fahrenheit. Pretty clever, huh? Wish I thought of it,
d it from the WinAVR version of the Butterfly

 quit owning up to all this theft and from now on
if you see something clever (the good kind of clever) just

I stole it. */

1; i++)

ord(&TEMP_Fahrenheit_pos[i]))

 }

/* Next we convert the integer ADCresult to a string that
rom the
ur file.

 use the itoa() function, which converts and
ASCII character array terminated with '\0'.

0);

e temperature to the PC
("The temperature is ");

 Fahrenheit.\r");

 know where the “@#%#&*#!!!!” comes

0','0','0','\0'};
','0','0','\0'};

as in the table
than the ADC r

but I borrowe
code. I'll

assume that

 for (i=0; i<=14
 {
 if (ADCresult > pgm_read_w
 {
 break;
 }

we can transmit to the PC. Let’s use a function f
standard library. We add #include <stdlib.h> to o

 Then we can
integer to an
 */

 itoa(i, fahr, 1

 // Send th

sendString
 sendString(fahr);
 sendString(" degrees

}

The @#%#&*#!!!! Volt Meter

If you read the debugging tale, you
from.

void getVolt()
{
 char voltintpart[]= {'
 char voltfractpart[]= {'0
 int intpart = 0;
 int fractpart = 0;
 int ADCresult = 0;

Chapter 9 – Digital Meets Analog – ADC and DAC

222

0);
t, 10);

C
g is ");

C, and copy the Demonstrator and PC_Comm .c and .h
t. Change the Demonsrator.c by adding the following

ctions. Compile, load, and test.

nclude "Demonstrator.h"

 USA

y to communicate.\r");
cally

he ADC demo.\r");

;
e value\r");

 ADCresult = ADC_read();
 intpart = ADCresult/50;

%50; fractpart = ADCresult

 itoa(intpart, voltintpart, 1

tpar itoa(fractpart, voltfrac

o the P // Send the voltage t
 sendString("The readin
 sendChar(voltintpart [0]);
 sendChar('.');
 sendChar(voltfractpart [0]);
 sendString(" volts.\r");
}

d the parseInput functions: The initializer an

Open a new directory, AD

last projecfiles from the
functions and the above fun

#i
i
nclude "PC_Comm.h"

#

er() void initializ
{
 // Calibrate the oscillator:
 OSCCAL_calibration();

 // Initialize the USART

RTinit();

 ADC_init(1);

 // say hello
 sendString("\rPC_Comm.c read

i // identify yourself specif
 ndString("You are talking to t se
 // show commands

:\r"); sendString("Commands
 sendString("light - returns a light value\r");

perature in fahrenheit\r") sendString("temp - returns the tem
ag sendString("volt - returns a volt

}

Chapter 9 – Digital Meets Analog – ADC and DAC

223

 case 'l':
 if((s[1]=='i') && (s[2]=='g')&& (s[3]=='h') && (s[4 =='t'))

 case
 if(& (s[3] == 'p'))

(s[3] == 't'))

') && (s[4]=='?'))
the ADC demo.\r");

ing("\rYou sent: '");
);

n't understand.\r");

}

hen you turn on the Butterfly you should see the following on HyperTerminal:

o communicate.
o the ADC demo.

temperature in fahrenheit
ltage value

pe in:

void parseInput(char s[])
 {
 // parse first character
 switch (s[0])
 {

 getLight();
 break;

 't':
 (s[1] == 'e') && (s[2] == 'm')&
 getTemperature();
 break;
 case 'v':
 if((s[1] == 'o') && (s[2] == 'l')&&
 getVolt();
 break;
 case 'd':

s[3]=='o if((s[1]=='e') && (s[2]=='m') && (
 sendString("You are talking to
 break;
 default:
 sendStr
 sendChar(s[0]
 sendString("' - I do
 break;

 }
 s[0] = '\0';

Using ADC

W

PC_Comm.c ready t
You are talking t
Commands:

alue light - returns a light v
temp - returns the

 returns a vo

volt -

Ty

Chapter 9 – Digital Meets Analog – ADC and DAC

224

 degrees Fahrenheit is too darn hot to work.

he light sensor and type in:

r for a high light level:

ading is 236 somethings.

ing the room light and type in:

 room light and type:

e light reading is 1004 somethings.

lt

he res

temp

The response looks like:

The temperature is 78 degrees Fahrenheit.

Turn on a fan! 78

Put a flashlight on t

light

The response is a low numbe

The light re

Us

light

r a medium light level: The response is a low number fo

The light reading is 645 somethings.

Put your finger over the sensor to block the

light

The response is a low number for a low light level:

Th

Type in:

vo

T ponse looks like:

Chapter 9 – Digital Meets Analog – ADC and DAC

225

ng is 0.0 volts.

rrrrm ed to put a
ltage on pin 2 of J407 on the Butterfly. But first we need solder some wires on a
tentiometer so we can vary a voltage. The JAMECO parts list has a 10 k Ohm

, we connect one side to +3v and the other to
t 1 of J407, the ADC connector, as shown

 Figu ntiometer shaft we move a wiper connected to
 center wire up or down. The full +3v is dropped across the potentiometer and

e center leg ‘sees’ a voltage proportional to the resistance above and below it.

The readi

U mmm… Oh yes, if we are going to measure voltage, we ne
vo

op
potentiometer listed. As in Figure 28
GND, hen we connect the middle to pin

ng the potein re 26. By turni
the
th

+3v

GND

+2.1v

3 k Ohms above

7 k Ohms below

10 k Ohms
Potentiometer

Figure 28: Potentiometer Schematic

Chapter 9 – Digital Meets Analog – ADC and DAC

Butterfly Ground

Butterfly +3v

Pin 1 of J407 connects to
center leg of potentiometer

Pin21 of J407 connects to
Butterfly Ground

Figure 29: Voltage measurement

Now we can get some responses. Try turning the potentiom
nd in response to a volt command you should see s

eter to various settings
omething like: a

volt
The reading is 2.1 volts.
volt
The reading is 3.0 volts.
volt
The reading is 1.4 volts.
volt
The reading is 0.4 volts.

226

Chapter 9 – Digital Meets Analog – ADC and DAC

227

illoscope

rom 0 to +3v in 255 steps. We will

 wave forms: sine, square, triangle, and sawtooth. Since this is
 educational enterprise we will reuse the software with the millisecond interrupt

e’ frequencies pretty slow.

d
reusing the ADC project software to read the data from our Function Generator.

n
e
e
l

n

a
onably accurate DAC for very little cost. Usually you’ll see two resistor

 case we would use a single 4.4k Ohm resistor in

JAMECO list, Let’s just use two of each for the 4.4k resistors. The 2.2k and 4.4k

e
a
h

e

ing HyperTerminal and have a really slow crappy
 in Figure 34.

DAC and ADC - Function Generator / Digital Osc

onverter, DAC, made with a R-2R In this project we will use a Digital to Analog C
resistor ladder circuit that will output voltages f

se voltage values stored in look-up tables to generate ‘functions’ which in this u
case are repeating
an
making our ‘wav

We will also develop a Digital Oscilloscope, using the Butterfly’s ADC an

Since Digital Oscilloscopes normally cost tens of thousands of dollars, you ca
expect some compromises. This thing is very very very … very slow. (And th
‘screen’ is rotated 90 degrees.) If you set the ‘ctc’ to 250 you can see the wav
output on HyperTerminal. If you set ‘ctc’ to 1, you can see the signal on a rea
oscilloscope.

We will output the look-up table data on port D and attach the pins as shown i
Figure 27. An R-2R resistor ladder looks a little magical, and the circuit analysis,

 though simple in concept, turns out to be fairly complex, but it makes
reas
values in this type circuit, in our
place of the two 2.2k resistors, but since we got 100 2.2k resistors from our

are not magical numbers; you can use any value for R as long as the other is 2R
and not be so low as to drain the battery or so high as to block the current.

Using the 2.2k resistors from the JAMECO list construct your DAC using th
schematic in Figure 27, which is illustrated by the close-up photo in Figure 28,
medium distant photo in Figure 29, and the full setup in Figure 30 complete wit
a sine wave on an oscilloscope.

If you don’t have an oscilloscope, just connect the output of the DAC to t
C on J407, just like with the potentiometer as shown in Figure 29.

h
Butterfly AD
Now you can read the output us

eways oscilloscope as shownsid

Chapter 9 – Digital Meets Analog – ADC and DAC

2.2 k2.2 k2.2 k

228

2.2 k2.2 k2.2 k

2.2 k2.2 k2.2 k

2.2 k2.2 k2.2 k

2.2 k2.2 k2.2 k

2.2 k2.2 k2.2 k

2.2 k2.2 k2.2 k

2.2 k2.2 k2.2 k

Analog OutPORTD.7

PORTD.6

PORTD.5

PORTD.4

PORTD.3

PORTD.2

PORTD.1

PORTD.0

2.2 k

Figure 30: R-2R resistor ladder

Figure 31: Breadboard of R-2R DAC

Chapter 9 – Digital Meets Analog – ADC and DAC

229

Figure 32: Breadboard R-2R DAC wiring

Figure 33: R-2R DAC with Oscilloscope

Chapter 9 – Digital Meets Analog – ADC and DAC

230

Figure 34: Function Generator / Digital Oscilloscope on HyperTerminal

Chapter 9 – Digital Meets Analog – ADC and DAC

231

quare Wave Figure 35: Sine Wave Figure 36: S

Figure 37: Triangle Wave Figure 38: Sawtooth Wave

Your skills as a C programmer should be to the point where you can read and

oject without further comment. So I’ll just
 it.

// Demonstrator.h Function Generator / Digital Oscilloscope version

void
void
void

id startWave(int);
id startSine(void);

void startSquare(void);
void
void

void DigitalOscilloscopeTimerInit(void);

;
id set_OCR0A(unsigned char count);

void ADC_init(void);
int ADC_read(void);

understand all the software for this pr
ive you the listing and let you have atg

 initializer(void);
 parseInput(char *);
 showMessage(char);

int parse_ctc(char *);
void set_ctc(int);

vo
vo

 startSawtooth(void);
 startTriangle(void);

void MilliSec_init(unsigned char count)
vo

Chapter 9 – Digital Meets Analog – ADC and DAC

232

llator:

g(ENTER);
sendFString(TEXT_CTC);

dFString(TO_START);
dFString(TEXT_SINE);

sendFString(WAVE);

sendFString(TEXT_SQUARE);

sendFString(ENTER);

 sendFString(TEXT_SAWTOOTH);

init(250); // default to 1000 Hz

DigitalOscilloscopeTimerInit();

// Demonstrator.c Function Generator / Digital Oscilloscope version

#include "PC_Comm.h"
#include "Messages.h"
include "WaveTables.h" #

unsigned char count = 0;
unsigned char tenth = 0;
//unsigned long signal = 0; // used for test

void initializer()
 {

 // Calibrate the osci
 OSCCAL_calibration();

 // Initialize the USART
 USARTinit();

 // set PORTD for output

DDRD = 0xFF;

 // Display instructions on PC
 sendFString(TALKING_TO);
 sendFString(WHO_DEMO);

sendFStrin

 sendFString(ENTER);
 sendFString(TEXT_SINE);
 sen

sen

 sendFString(ENTER);

 sendFString(TO_START);
 sendFString(TEXT_SQUARE);
 sendFString(WAVE);

 sendFString(TO_START);
 sendFString(TEXT_SAWTOOTH);
 sendFString(WAVE);

 sendFString(ENTER);
 sendFString(TEXT_TRIANGLE);
 sendFString(TO_START);
 sendFString(TEXT_TRIANGLE);
 sendFString(WAVE);

 MilliSec_

Chapter 9 – Digital Meets Analog – ADC and DAC

233

 startSine();

 if((s[1] == 'i') && (s[2] == 'n')&& (s[3] == 'e'))

'&&(s[3]=='t')&&(s[4]=='o')&&(s[5]=='o')
&&(s[6]=='t')&&(s[7]=='h'))

if((s[1]=='r')&&(s[2]=='i')&&(s[3]=='a')&&(s[4]=='n')&&(s[5]=='g')&&(s[6]=
 ='l')&&(s[7]=='e'))

= 'c'))

 'o') && (s[4] == '?'))

 break;

;

 <= 11))

 {
 ctc[j++] = s[i++];
 }

 else

 ADC_init();

}

har s[]) void parseInput(c
{

 // parse first character
 switch (s[0])
 {

 case 's':

 startSine();
 else if((s[1]=='q')&&(s[2]=='u')&&(s[3]=='a')&&(s[4]=='r')&&(s[5]=='e'))
 startSquare();

else if((s[1]=='a')&&(s[2]=='w

 startSawtooth();
 break;
 case't':

 startTriangle();
 break;

 case 'c':
] == 't') && (s[2] = if((s[1

 parse_ctc(s);
 break;
 case 'd':
 if((s[1] == 'e') && (s[2] == 'm') && (s[3] ==

(TALKING_TO); sendFString
 sendFString(WHO_DEMO);

 default:
 sendFString(BAD_COMMAND1);
 sendChar(s[0]);
 sendFString(BAD_COMMAND2);

 break;
 }
 s[0] = '\0';
}

int parse_ctc(char s[])
{
 char ctc[11];

unsigned char i = 3, j = 0

 while((s[i] != '\0') && (j

{

 if((s[i] >= '0') && (s[i] <= '9'))

Chapter 9 – Digital Meets Analog – ADC and DAC

234

sendFString(ERROR_NONINT);
 sendChar(s[i]);

ar('\r');
 0;

 }

1];

 MilliSec_init(count);

 // Send the song title to the PC
sendChar('\r');

startWave(2);

 {

 sendCh
 return

 }

 ctc[j] = '\0';

if(j>4)// must be < 256
 {
 sendFString(ERROR_NUMTOLARGE);
 return 0;
 }

else
 {
 set_ctc(atoi(ctc));

}

 return 1;
}

void set_ctc(int count)
{
 char ctc[1

 sendString("Setting the Compare Timer Count to: ");
 itoa(count,ctc,10);
 sendString(ctc);
 sendChar('\r');

}

void startWave(int wave)
{
 sendFString(TEXT_SETTING);
 sendFString(TEXT_WAVE_TBL[wave]);

 pWave=(int*)pgm_read_word(&Waves[wave]); // looks too complicated..
}

void startSine()
{

startWave(0);
}
void startSquare()
{
 startWave(1);
}
void startSawtooth()
{

}

Chapter 9 – Digital Meets Analog – ADC and DAC

235

riangle()

hich gives a 250 kHz input to the timer/counter. A compare of 250 throws
pt every millisecond.

it(unsigned char count)

ize Timer0.

 // Enable timer0 compare interrupt

ompare value
set_OCR0A(count);

 Clear on Timer Compare (CTC) mode,
 = (1<<WGM01)|(0<<WGM00)|(1<<CS02)|(0<<CS01)|(0<<CS00);

id set_OCR0A(unsigned char count)

GNAL(SIG_OUTPUT_COMPARE0)

gm_read_word(pWave + count); // used for test
 RTD = pgm_read_word(pWave + count++); // read table

}

void startT
{
 startWave(3);
}

/*
The USART init set the system oscillator to 2 mHz. We set the Timer0 prescaler
to clk/8 w
n interrua

*/
void MilliSec_in
{
 // Initial

 TIMSK0 = (1<<OCIE0A);

// Sets the c

 // Set
 TCCR0A

}

// Initialize for 1 millisecond interrupt
void DigitalOscilloscopeTimerInit()
{
 // Initialize Timer2.

 // Enable timer2 compare interrupt
 TIMSK2 = (1<<OCIE2A);

 // Sets the compare value
 OCR2A = 1;

 // Set Clear on Timer Compare (CTC) mode,
 TCCR2A = (1<<WGM21)|(0<<WGM20)|(1<<CS22)|(0<<CS21)|(0<<CS20);

}

vo
{
 // Sets the compare value
 OCR0A = count;
}

// Interrupt occurs once per millisecond
SI
{
// signal += p

PO
tenth++;

Chapter 9 – Digital Meets Analog – ADC and DAC

236

 once per millisecond
IGNAL(SIG_OUTPUT_COMPARE2)

 +)

 }

 to HyperTerminal

{

 for(int i = 0; i < signal; i++)

int dummy = 0;

 // Take a dummy reading , which basically allows the ADC
l readings

// Interrupt occurs
S
{
 int sig = 0;

 sig = ADC_read();

if (tenth >= 10)
{
 tenth = 0;

for(int i = 0; i < (sig/4); i+
{
 sendChar(' ');
}
sendChar('*');
sendChar('\r');

/* // Test code to ou
if (tenth >= 10)

tput wave from table

 tenth = 0;
 signal /= 50;

 {
 sendChar(' ');

 }
 sendChar('*');
 sendChar('\r');
 signal = 0;
 }
*/

}

/
*
 ADC common functions

/ *

void ADC_init()
 {

 ADMUX = 1;

 // set ADC prescaler to , 1MHz / 8 = 125kHz
 ADCSRA = (1<<ADEN) | (1<<ADPS1) | (1<<ADPS0);

 // to hack up any hairballs before we take any rea
 dummy = ADC_read();

Chapter 9 – Digital Meets Analog – ADC and DAC

237

 sbi(DDRF, DDF3); // sbi(DDRF, PORTF3);

, ADIF flag active

/ do the ADC conversion 8 times for better

 do single conversion
 wait for conversion done, ADIF flag active

 ADCL; // read out ADCL register
= (ADCH << 8); // read out ADCH register

 // accumulate result (8 samples) for later

 3; // average the 8 samples

; // mt cbi(PORTF, PORTF3); // disable the VCP
; // mt cbi(DDRF, PORTF3);

 cbi(ADCSRA, ADEN); // disable the ADC

}

// WaveTables.h

c,0x98,0x95,0x92,0x8f,0x8c,0x89,0x86,0x83,

}

)int ADC_read(void
{

 char i;
 int ADC_temp;
 // mt int ADC = 0 ;
 int ADCr = 0;

 // To save power, the voltage over the LDR and the NTC is turned off when not
used
 // This is done by controlling the voltage from a I/O-pin (PORTF3)

 sbi(PORTF, PF3); // mt sbi(PORTF, PORTF3); // Enable the VCP (VC-
peripheral)

 sbi(ADCSRA, ADEN); // Enable the ADC

 //do a dummy readout first
 ADCSRA |= (1<<ADSC); // do single conversion

 while(!(ADCSRA & 0x10)); // wait for conversion done

 for(i=0;i<8;i++) /
accuracy
 {
 ADCSRA |= (1<<ADSC); //

 while(!(ADCSRA & 0x10)); //

 ADC_temp =
 ADC_temp +

 ADCr += ADC_temp;
averaging
 }

 ADCr = ADCr >>

 cbi(PORTF,PF3)

 cbi(DDRF,DDF3)

 return ADCr;

const int Sine[] PROGMEM =
{
0x80,0x83,0x86,0x89,0x8c,0x8f,0x92,0x95,0x98,0x9c,0x9f,0xa2,0xa5,0xa8,0xab,0xae,
0xb0,0xb3,0xb6,0xb9,0xbc,0xbf,0xc1,0xc4,0xc7,0xc9,0xcc,0xce,0xd1,0xd3,0xd5,0xd8,
0xda,0xdc,0xde,0xe0,0xe2,0xe4,0xe6,0xe8,0xea,0xec,0xed,0xef,0xf0,0xf2,0xf3,0xf5,
0xf6,0xf7,0xf8,0xf9,0xfa,0xfb,0xfc,0xfc,0xfd,0xfe,0xfe,0xff,0xff,0xff,0xff,0xff,
0xff,0xff,0xff,0xff,0xff,0xff,0xfe,0xfe,0xfd,0xfc,0xfc,0xfb,0xfa,0xf9,0xf8,0xf7,
0xf6,0xf5,0xf3,0xf2,0xf0,0xef,0xed,0xec,0xea,0xe8,0xe6,0xe4,0xe2,0xe0,0xde,0xdc,
0xda,0xd8,0xd5,0xd3,0xd1,0xce,0xcc,0xc9,0xc7,0xc4,0xc1,0xbf,0xbc,0xb9,0xb6,0xb3,
0xb0,0xae,0xab,0xa8,0xa5,0xa2,0x9f,0x9

Chapter 9 – Digital Meets Analog – ADC and DAC

238

x80,0x7c,0x79,0x76,0x73,0x70,0x6d,0x6a,0x67,0x63,0x60,0x5d,0x5a,0x57,0x54,0x51,

,0x0f,0x10,0x12,0x13,0x15,0x17,0x19,0x1b,0x1d,0x1f,0x21,0x23,
x25,0x27,0x2a,0x2c,0x2e,0x31,0x33,0x36,0x38,0x3b,0x3e,0x40,0x43,0x46,0x49,0x4c,
x4f,0x51,0x54,0x57,0x5a,0x5d,0x60,0x63,0x67,0x6a,0x6d,0x70,0x73,0x76,0x79,0x7c

};

const int Square[] PROGMEM =
{
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,
0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,
0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,
0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,
0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,
0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,
0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,
0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff
};

const int Sawtooth[] PROGMEM =
{
0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08,0x09,0x0a,0x0b,0x0c,0x0d,0x0e,0x0f,
0x10,0x11,0x12,0x13,0x14,0x15,0x16,0x17,0x18,0x19,0x1a,0x1b,0x1c,0x1d,0x1e,0x1f,
0x20,0x21,0x22,0x23,0x24,0x25,0x26,0x27,0x28,0x29,0x2a,0x2b,0x2c,0x2d,0x2e,0x2f,
0x30,0x31,0x32,0x33,0x34,0x35,0x36,0x37,0x38,0x39,0x3a,0x3b,0x3c,0x3d,0x3e,0x3f,
0x40,0x41,0x42,0x43,0x44,0x45,0x46,0x47,0x48,0x49,0x4a,0x4b,0x4c,0x4d,0x4e,0x4f,
0x50,0x51,0x52,0x53,0x54,0x55,0x56,0x57,0x58,0x59,0x5a,0x5b,0x5c,0x5d,0x5e,0x5f,
0x60,0x61,0x62,0x63,0x64,0x65,0x66,0x67,0x68,0x69,0x6a,0x6b,0x6c,0x6d,0x6e,0x6f,
0x70,0x71,0x72,0x73,0x74,0x75,0x76,0x77,0x78,0x79,0x7a,0x7b,0x7c,0x7d,0x7e,0x7f,
0x80,0x81,0x82,0x83,0x84,0x85,0x86,0x87,0x88,0x89,0x8a,0x8b,0x8c,0x8d,0x8e,0x8f,
0x90,0x91,0x92,0x93,0x94,0x95,0x96,0x97,0x98,0x99,0x9a,0x9b,0x9c,0x9d,0x9e,0x9f,
0xa0,0xa1,0xa2,0xa3,0xa4,0xa5,0xa6,0xa7,0xa8,0xa9,0xaa,0xab,0xac,0xad,0xae,0xaf,
0xb0,0xb1,0xb2,0xb3,0xb4,0xb5,0xb6,0xb7,0xb8,0xb9,0xba,0xbb,0xbc,0xbd,0xbe,0xbf,
0xc0,0xc1,0xc2,0xc3,0xc4,0xc5,0xc6,0xc7,0xc8,0xc9,0xca,0xcb,0xcc,0xcd,0xce,0xcf,
0xd0,0xd1,0xd2,0xd3,0xd4,0xd5,0xd6,0xd7,0xd8,0xd9,0xda,0xdb,0xdc,0xdd,0xde,0xdf,
0xe0,0xe1,0xe2,0xe3,0xe4,0xe5,0xe6,0xe7,0xe8,0xe9,0xea,0xeb,0xec,0xed,0xee,0xef,
0xf0,0xf1,0xf2,0xf3,0xf4,0xf5,0xf6,0xf7,0xf8,0xf9,0xfa,0xfb,0xfc,0xfd,0xfe,0xff
};

const int Triangle[] PROGMEM =
{
0x00,0x02,0x04,0x06,0x08,0x0a,0x0c,0x0e,0x10,0x12,0x14,0x16,0x18,0x1a,0x1c,0x1e,
0x20,0x22,0x24,0x26,0x28,0x2a,0x2c,0x2e,0x30,0x32,0x34,0x36,0x38,0x3a,0x3c,0x3e,
0x40,0x42,0x44,0x46,0x48,0x4a,0x4c,0x4e,0x50,0x52,0x54,0x56,0x58,0x5a,0x5c,0x5e,
0x60,0x62,0x64,0x66,0x68,0x6a,0x6c,0x6e,0x70,0x72,0x74,0x76,0x78,0x7a,0x7c,0x7e,
0x80,0x82,0x84,0x86,0x88,0x8a,0x8c,0x8e,0x90,0x92,0x94,0x96,0x98,0x9a,0x9c,0x9e,

0
0x4f,0x4c,0x49,0x46,0x43,0x40,0x3e,0x3b,0x38,0x36,0x33,0x31,0x2e,0x2c,0x2a,0x27,
0x25,0x23,0x21,0x1f,0x1d,0x1b,0x19,0x17,0x15,0x13,0x12,0x10,0x0f,0x0d,0x0c,0x0a,
0x09,0x08,0x07,0x06,0x05,0x04,0x03,0x03,0x02,0x01,0x01,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x01,0x01,0x02,0x03,0x03,0x04,0x05,0x06,0x07,0x08,
0x09,0x0a,0x0c,0x0d
0
0

Chapter 9 – Digital Meets Analog – ADC and DAC

239

0xa0,0xa2,0xa4,0xa6,0xa8,0xaa,0xac,0xae,0xb0,0xb2,0xb4,0xb6,0xb8,0xba,0xbc,0xbe,
c4,0xc6,0xc8,0xca,0xcc,0xce,0xd0,0xd2,0xd4,0xd6,0xd8,0xda,0xdc,0xde,
e4,0xe6,0xe8,0xea,0xec,0xee,0xf0,0xf2,0xf4,0xf6,0xf8,0xfa,0xfc,0xfe,

ff,0xfd,0xfb,0xf9,0xf7,0xf5,0xf3,0xf1,0xef,0xef,0xeb,0xe9,0xe7,0xe5,0xe3,0xe1,
7,0xd5,0xd3,0xd1,0xcf,0xcf,0xcb,0xc9,0xc7,0xc5,0xc3,0xc1,
7,0xb5,0xb3,0xb1,0xaf,0xaf,0xab,0xa9,0xa7,0xa5,0xa3,0xa1,

AVE4[] PROGMEM = "triangle";

0xc0,0xc2,0x
0xe0,0xe2,0x
0x
0xdf,0xdd,0xdb,0xd9,0xd
0xbf,0xbd,0xbb,0xb9,0xb
0x9f,0x9d,0x9b,0x99,0x97,0x95,0x93,0x91,0x8f,0x8f,0x8b,0x89,0x87,0x85,0x83,0x81,
0x7f,0x7d,0x7b,0x79,0x77,0x75,0x73,0x71,0x6f,0x6f,0x6b,0x69,0x67,0x65,0x63,0x61,
0x5f,0x5d,0x5b,0x59,0x57,0x55,0x53,0x51,0x4f,0x4f,0x4b,0x49,0x47,0x45,0x43,0x41,
0x3f,0x3d,0x3b,0x39,0x37,0x35,0x33,0x31,0x2f,0x2f,0x2b,0x29,0x27,0x25,0x23,0x21,
0x1f,0x1d,0x1b,0x19,0x17,0x15,0x13,0x11,0x0f,0x0f,0x0b,0x09,0x07,0x05,0x03,0x01
};

const char TEXT_WAVE1[] PROGMEM = "sine";
const char TEXT_WAVE2[] PROGMEM = "square";
const char TEXT_WAVE3[] PROGMEM = "sawtooth";
const char TEXT_W

// pointer-array with pointers to the wave arrays
const int *Waves[] PROGMEM = { Sine, Square, Sawtooth, Triangle, 0};

const char *TEXT_WAVE_TBL[] = { TEXT_WAVE1, TEXT_WAVE2, TEXT_WAVE3, TEXT_WAVE4,
0};

const int *pWave; // point to a ram location (pointer array Waves)

Chapter 10: C Structures

241

Chapter 10: C Structures

Structure Basics
A structure is a collection of variables that may be of different types all grouped
together under a single name. They are like records in other programming
languages and form a data unit that is convenient to handle. This convenience is
very useful in large programs because it allows us to group related variables and
handle them as a ‘family’ rather than as individuals. For example:

 struct Pardue {
 string Joe = “Joe”;
 string Clay = “Clay”;
 string Beth = “Beth”;
 }

groups Joe, Clay, and Beth all in the Pardue family structure. In software we can
refer to me as: Joe.Pardue or Joe->Pardue depending on the use.

Structures can come in all sizes. A small one would be useful in the PWM project
to link the pulse frequency to the pulse width. A larger one could be used in the
RTC project to link together all the time and date variables into a unit.

Let’s look at a simple structure for pulse width modulation data. As we’ve seen
we do PWM by varying the pulse frequency and the pulse width. We can declare
a structure:

 struct pwm {
 int pulseFreq;
 unsigned char pulseWidth;
 };

e use the keyword struct to start the declaration, then provide the structure a
e, and enclose the variable m mb The structure tag ‘pwm’ is

optional and we can name c it is defined. The variable
ames are tied to the structure and we can legally define a variable ‘int pulseFreq’
ter and use it separate from the structure, the compiler would differentiate

W
nam e ers in a block.

the stru ture later when
n
la

Chapter 10: C Structures

242

 of

 type, and like other data types variables
an be declared to be of that type:

int x, y, z;

r3;

hich eates struct pwm.

his ‘d clarati tantiation’ of a structure is an important concept that
n of pwm did not

ave a following it, so it exists as a prototype and no memory is
llocate re we added the variables, pulser1,pulser2,

 of the structure in
memory. Not only is instantiation important word in the object oriented

ming y conversation.
Hey b e, wa e our procreative potential?”

e can instantiate our struct and assign data to it:

struct pwm pulser1 = { 1000, 127};

ember

We access m bers of structs using the structure member operator ‘.’:

 int x,y;

ls 1000

between pulseFreq and pwm.pulseFreq. As we’ll see in a minute, this reuse
names, normally a no-no, can help clarify code.

The structure declaration creates a data
c

 struct { …. } x, y, z;

Usually you see this done as:

 struct pwm {
 int pulseFreq;
 unsigned char pulseWidth;
 }pulser1,pulser2,pulse

w cr three instances, pulser1,pulser2,pulser3, of the

T e on versus ins
you’ll see a lot if you move on up to C++. The first declaratio
h variable list
a d. In the second version, whe
and pulser3, we actually create three copies (instances)

program world, it’s very geeky to find uses for it in ordinar
“ ab nna instantiat

W

which defines a pulse with a frequency of 1 kHz and a 50% duty cycle (rem
– 127 is half of 255 which is 100%).

em

 x = pulser1.pulseFreq; // x now equa

Chapter 10: C Structures

243

ures can be nested:

 }myPWMS;

ake programs

truc
You can do four things to a structure:

1.
2.
3. Take its address with &
4.

Let’s w to use structures
with th

1. Pass components to the functions separately.
2. Pass an entire structure to the function.
3. Pass a pointer to a structure to the function.

In a moment we’ll see why #3 is best.

 y = pulser1.pulseWidth // y now equals 127;

Struct

 struct pwms {
 struct pwm pulser1;
 struct pwm pulser2;
 struct pwm pulser2;
 int numPulsers = 3;

and to access pulser1 pulseFreq we use:

 x = myPWMS.pulser1.pulseFreq;

hile it may not seem like it at this time, this kind of syntax can mW
easier to write and understand, with the usually warning that C gurus will use
them to impress and thereby confuse you.

S tures and Functions

Copy it
it Assign to it as a un

Access its members

rite some functions to modulate some pulses and see how
em. We could approach this three ways:

Chapter 10: C Structures

244

signed char as arguments and returning a pointer to a pwm structure.

irst Let’s redo the struct:

 struct

 unsigned Widt

then we rite

 m m ePWM nt p , un gned ulseWidth)

ruct pwm temp;

.pulseFreq = pulseFreq;

 this function we reuse the names pulseFreq and pulseWidth and cause no
e

 pulser1k50 = makePWM(1000,128);//make a 50% duty 1000 kHz pulse
 pulser1k25 = makePWM(1000,64);//make a 25% duty 1000 kHz pulse
 puls

When of the
structure to the function. For tiny structures, this won’t matter much, but for large
structures we can eat a lot of RAM, since the entire structure will be pushed onto
the stac idth in a list of

 pwm structs:

We will write a function makePWM to initialize a PWM structure by accepting an
int and an un
F

{
 int pulseFreq;

pulse h;
}pwm;

 w our function:

struct pw ak (i ulseFreq si char p
 {

 st

 temp
 temp.pulseWidth = pulseWidth;
 return temp;
 }

In
conflict because one set is bound to the struct and the other is bound to th
function.

We can use makePWM to dynamically initialize structures:

 struct pwm pulser1k50;
 struct pwm pulser1k25;
 struct pwm pulser4k10;

er4k10 = makePWM(4000,25);//make a 10% duty 4000 kHz pulse

e use a structure as an argument in a function we send a copyw

k. Let’s write a function to find the pulse with the greatest w
3

Chapter 10: C Structures

245

truct pwm widestPWM(struct pwm pulser1, struct pwm pulser2,

 if (pulser1.width > pulser3.width) return pulser1;

/ Declare a function with struct pointers as parameters
destPWM(struct pwm *, struct pwm *, struct pwm *);

re we use the structure pointer operator ‘->’ to access members of the struct
ces stumble all over using the structure member operator

d.

wm pulser4k10;

truct pwm myWidestPWM;

10;

s
struct pwm pulser2,)
{
 if(pulser1.width > pulser2.width)
 {

 }
 else if (pulser2.width > pulser3.width) return pulser2
 return pulser3;
}

But that’s one big memory hog. We can save stack memory by defining a function
to use struct pointers as paramerters:

/
struct pwm wi

// Define it
struct pwm widestPWM(struct pwm *p1, struct pwm *p2, struct pwm *p2)
{
 if(p1.width > p2.width)
 {
 if (p1->width > p3->width) return p1;
 }
 else if (p2->width > p->width) return p2
 return p3;
}

He
passed by a pointer. Novi
‘.’ and the structure pointer operator ‘->’ operator, so be forewarne

We use this function as follows:

 struct pwm pulser1k50;

pwm pulser1k25; struct
truct p s

 s

 myWidestPWM = widestPWM(&pulser1k50, &pulser1k25, &pulser4k

Chapter 10: C Structures

246

tructure Arrays

 s u
 stru
 struct pwm pulser4k10;

 pulser1k50 = makePWM(1000,128);//make a 50% duty 1000 kHz pulse
 pulser1k25 = makePWM(1000,64);//make a 25% duty 1000 kHz pulse
 pulser4k10 = makePWM(4000,25);//make a 10% duty 4000 kHz pulse

We could have defined an array of these structures and made them as follows

 the
mes carry more user information. pulser1k25 versus pulser[1]. But

re arrays of structures come in real handy.

ames with the typedef facility.

e;

e anything declared as Byte as if it was an
es can be aliased in this manner. Typedef works

es an alias, but defines are handled by the
can do.

 software more readable: Byte makes more sense in
facilitate portability of software by
ou can change them as you change

S

In the last section we used:

tr ct pwm pulser1k50;
ct pwm pulser1k25;

 struct pwm pulser[] = {
 { 1000, 128 };
 { 1000, 64 };
 { 4000, 25);
 }

Actually the prior, non-array version probably makes more sense because

stance nain
there are cases whe

Typedef
C allows us to create new data type n

signed char Byt typedef un

would cause the compiler to handl
unsigned char. Only actual C typ
somewhat like define, in that it provid
preprocessor and more limited in what they

Typedefs are useful in making
our use than unsigned char. Another use is to

machine specific types in typedefs so yputting
machines.

Chapter 10: C Structures

247

s
rovides a way to have a type that may be of different sizes depending on

the circumstances of its use.

t or an int in the same program

 float f;

 } u;

structure or union that is defined to be
a flag, or a

u might want to define. These fields can be
fields slow

ficiency
and
ion
ise
ay

In our exam unsigned char when
t could only have two values: TRUE or FALSE. Using bit-fields we can

imilar variables in a single unsigned char (note – not true for
otes them to eight bytes).

W could define:

Union
A union p

We use a union in prgmspacehlp.h to store a floa
memory:

union
 {

 int i[2]; // uint16_t

Bit-fields

ANSI C defines bit-fields as a member of a
a cluster of bits. This cluster can be a single bit, as would be used for
4-bit nibble, or any number of bits yo
very useful, but unfortunately, in many microcontrollers, these bit-

n (the compiler promotes bit to larger data types) so for efthings dow
sake, bits are best dealt with using bit masking, which compiles to faster

it masking simply uses a constant to define the positsmaller assembly code. B
of a bit in a byte and allows you to read or write only that bit using the bitw

nce we are learning C, then the mask-woperators. We will look at the C-way, si
 as efficient as possible. since we want to be

Bit-Fields the C-way

ples above we have often declared an object as an
that objec
declare eight s

inAVW R, which prom

e

unsigned char calibrate = FALSE;

Chapter 10: C Structures

248

;
unsigned int this : 1;
unsigned int that : 1;
unsigned int the : 1;
unsigned int other : 1;
unsigned int tobe: 1;
unsigned int or!tobe : 1;
unsigned int hello : 1;

} flags;

Setting aside 8 flags in the space formerly used by calibrate. Now we control the
loop:

 while(!flags.calibrate)

That is, we could have done this in an ideal world. In the real world, our compiler
would allow us to use the above syntax, but would assign 8 bytes to do the job.
K&R notes: “Almost everything about fields is implementation dependent.”

Bit-fields the masking-way

This is mostly a review of stuff presented with the bitwise operator section, but
reviews are good. Let’s look at a bit-masking example from OSCCAL.C:

We define an alias name for the Timer/Counter 2 Interrupt Flag Register:

 #define TIFR2 _SFR_IO8(0x17)

Noting that the _SFR_IO8(0x17) is itself an alias defined elsewhere, but
eventually is aliased to a specific register address on our ATMEGA169.

We next define two ‘bit-fields’ in the TIFR2 register;

to control a loop:

 while(!calibrate) { // do something while calibrate == FALSE};

which runs as long as calibrate equals FALSE. We could have used:

struct {

unsigned int calibrate : 1

Chapter 10: C Structures

define OCF2A 1

249

r structures. First we get the address of the Port B
registers from io169.h which also has defines for each bit.

PORTB _SFR_IO8(0x05)

#defin
defin

ction has:

lup on

And E which in binary is 1110,
so since PB etting PORTB equal to 00001110 << 0,
rememberi tor we know that we actually aren’t
doing anything, or rather we are left shifting 15 zero times, which is doing
not g r story, we are
setting POR l-ups on port B pins 2, 3,
and 4. And

#
#define TOV2 0

Next we write a function that causes our code to wait for the timer2 compare flag,
OCF2A, which is bit one of the Timer/Counter2 Interrupt Flag Register:

 while (!(TIFR2 && (1<<OCF2A)));// wait for timer2 compareflag

So this usage will do the same as a bit-field, but with greater efficiency.

Let’s look at another example where we assign Port B to a ‘bit-field structure’
without using bit-fields o

/* Port B */
#define PINB _SFR_IO8(0x03)
#define DDRB _SFR_IO8(0x04)
#define

e PB7 7
e PB6 6 #

#define PB5 5
#define PB4 4
#define PB3 3
#define PB2 2
#define PB1 1
#define PB0 0

n the Butterfly software main.c file, the initialization funI

PORTB = (15<<PB0); // Enable pul

 we ask, what’s with the 15? Well, 15 in hex is 0x
0 == 0, what we are doing is s

ng that ‘<<’ is the left-shift opera

hin if I’ve ever seen nothing, which I haven’t but… back to ou
TB pins 1, 2, and 3 to 1 thus enabling the pul

 that ends this discussion.

Chapter 10: C Structures

250

Thi l que is a compromise between the K&R way of
doing things in C and the machine efficient way of doing things in C for
mic

s a ternative bit-field techni

rocontrollers.

Chapter 10: C Structures

251

Projects

Finite State Machine

I in l ate Machines, Lions, Tigers,
and Bears… hat
there are graduate level Computer Science courses taught on this subject, so it can

et very scary indeed. But, fortunately for us, the fundamental concepts that we

he basic ideas behind finite state machines are used to tame systems that seem
imp s er is a finite state machine. At any given moment
the comput stor states, off or on, 0’s and 1’s.
The compu
current state and changes both the current state and the output state based on the
current state and the input state.

Actually yo w my state is ‘typing’.
If my ears te will change to ‘running
like l state isn’t >= the tigers ‘running like hell’
state, my fu lunch’, being digested’, and
‘being tige

When you think about it, the Butterfly, as simple as it is, does a lot of stuff. How
does the software keep track of what it is doing? How does it know to keep doing
it? How does it know when to do something different? And how does it know
what to do

Say the Butterfly is outputting a value on PORTD and you diddle the joystick,
how does i all this switch statement from
Chapter 5.

RTD = ~0x01;

break:

itia ly thought about naming this section “Finite St
 Oh My!” because the topic seems a bit scary. And I must admit t

g
will use are fairly easy to grasp, and we don’t need to go to great depths to get
what we need.

T

os ibly complex. A comput
er state is defined by a bunch of transi
ter inputs a set of 0’s and 1’s, from some external source, checks its

u and I can be seen as state machines. Right no
input the sound of a screeching tiger my sta

 he l.’ And, if my ‘running like hell’
ture state may sequence through ‘being

r poop.’

next?

t respond to being diddled? You may rec

switch(input){
_PLUS : case KEY

PO

Chapter 10: C Structures

252

PORTD = ~0x02;
break;

break;

PORTD = ~0x08;
break;

PORTD = ~0x10;
break;

rrent state is the value of PORTD. The input is the
tement for the specific joystick input sets the next

t is enclosed in a for(;;){}block, the
known, so the possibilities are finite and

e machine. What could be simpler? (Usually said
x.)

t of the box does a lot of stuff. And it has a lot of
enu state machine, which is

ation

 case KEY_NEXT :

 case KEY_PREV :
PORTD = ~0x04;

 case KEY_MINUS :

 case KEY_ENTER :

 default:
}

This is a state machine. The cu
oystick position. The case staj

state in PORTD. If this switch statemen
utterfly’s states and transitions are all B

you have yourself a finite stat
mpleright before things get co

But, of course, the Butterfly ou
state machines controlling its behavior. One is the m
really the core state machine as far as a user is concerned. Here is an illustr
of the Butterfly menu structure:

Chapter 10: C Structures

AVR Butterfly Revision

Time Clock

Date

"12:35:45"

"03:04:25"

Change clock format

Adjust clock

Adjust date

Change date formatFur Elise

Turkey march

Music

253

Sirene1

Sirene2

Whistle

Name "Your name" Enter name

Download name

Temperature "+24C"/"+75F"

Voltage "3V5"

Light "ADC28A"

Options Display

Bootloader

Power Save Mode

Auto Power Save

Adjust contrast

Jump to Bootloader

Press ENTER to sleep

5-90 minutes, OFF

Adjust volume by pressing joystick
UP/DOWN while playing

Shift between Celsius and Fahrenheit by
pressing the joystick UP/DOWN

Figure 39 Butterfly Menu

Chapter 10: C Structures

254

ay be scrolling the LCD with your name. Then
to keep some sort

puts and what

oing A_state and
A_input happens, then I enter Q7_state

ppens, then I enter YM_state
ppens, then I enter X15_state

t happens, then I enter Mental_state

se if B_input happens, then I enter A_state
ut happens, then I enter Y_state

input happens, then I enter Pros_state

else if C_input happens, then I enter Gamma_state

n do this like:

 on the LCD and
 is clicked left, then I enter the Revision state

ime state

 left, then I enter the Clock state
 else if the joystick is clicked down, then I enter the Music state

on
 and

At one moment the Butterfly m
you click the joystick down and it shows you the time. It needs
of data set that contains what it is doing now and how to react to in
to do next based on what is doing now.

We can think about input stimulated state transitions like this:

 If I am d

 if
 else if B_input ha
 else if C_input ha

 on // and so
 else if XXX_inpu
 If I am doing B_state and

 if A_input happens, then I enter B_state
 el
 else if C_inp
 // and so on
 and XXX_
 // and so on
 If I am doing XXX_state and

enter Alpha_state if A_input happens, then I
 else if B_input happens, then I enter Beta_state

 // and so on

 I enter Tennessee_state else if XXX_input happens, then

e that we caFrom the Butterfly menu we se

 If I am showing “AVR Butterfly”
 if the joystick
 else if the joystick is clicked down, then I enter the T

If I am showing the “Time” on the LCD and
 if the joystick is clicked

 // and so
 If I am showing “Options” on the LCD

Chapter 10: C Structures

255

he Display state
ystick is clicked down, then I enter the AVR Butterfly

ble
put st
uctures to keep track of it. First we define two generic structures that we will

ter instantiate for each specific state, input, and next state data set.

rfly software was written using an IAR
 complier. There are a lot of notes in the code

Thomas who did the porting.
 the discussion as they are not

ere.]

nd menu
e three relevant variables:

gned char state; // the current state
_P pText; // pointer to some text in FLASH memory

 char (*pFunc)(char input); // pointer to a function
MENU_STATE;

 the current state
the input stimulus

} MENU_NEXTSTATE;

 need to find the function that
ified state. The MENU_NEXTSTATE structure

state given the present state and an

TE structure first. We see that we can have 256
ame and a function pointer with each. The

 character input value and returning a

 if the joystick is clicked left, then I enter t
 else if the jo
state

For each state, we must know the next state that we must enter for each possi

ate. That’s going to be a lot of data so lets use what we’ve learned about in
str
la

[ASIDE: As mentioned before, the B

 AVR
utte

compiler and ported to the Win
t begin // mt. This is a note added by Martin tha

Kudo’s to Martin, but I’ve removed his notes from
relevant to what we are trying to learn h

In Menu.h we f

ext sta
ind the definitions of data structures for our menu state a

n te that contains th

typedef struct PROGMEM
{

si un
 PGM

}

typedef str
{

uct PROGMEM

 unsigned char state; //
 input; / unsigned char

 unsigned char nextstate; // the resulting next state

The MENU_STATE structure

c
provides the data we

should be run while in the spe
provides the data we need to find the next
input state.

Let’s deal with the MENU_STA

ssociate a text nstates, and can a
function pointer is defined as taking a

Chapter 10: C Structures

256

NU_STATE menu_state[] PROGMEM = {
// STATE STATE TEXT STATE_FUNC
 {ST_AVRBF, MT_AVRBF, NULL},
 {ST_AVRBF_REV, NULL, Revision},

MT_TIME, NULL},

 NULL},

efined as ST_AVRBF_REV

is defined as Revision

u will note in the table that each state has either a state text or a state function
defined, but not both, that complication will be explained later.

cture we also have 256 possible states, and 256
ssible next states for all those, that’s

for each state, fortunately we won’t need that
is structure in Menu.h as follows:

 menu_nextstate[] PROGMEM = {

 0, 0}

 can use this as:

character to the caller. We define an array of instances of this structure in Menu.h
as follows:

const ME

 {ST_TIME,
 {ST_TIME_CLOCK, MT_TIME_CLOCK, NULL},

stuff // Lots more

 {0, NULL,

 };

We can use this as:

 menu_state[1].state is d
 menu_state[1].pText is defined as NULL

ate[1].pFunc menu_st

Yo

ruFor the MENU_NEXTSTATE st

possible inputs for each state, and 256 po
65536 possible state transitions
many. We define an array of instances of th

const MENU_NEXTSTATE
// STATE INPUT NEXT STATE

, KEY_PLUS, ST_OPTIONS}, {ST_AVRBF
 {ST_AVRBF, KEY_NEXT, ST_AVRBF_REV},
 {ST_AVRBF, KEY_MINUS, ST_TIME},

 // Lots more states

 {0,
};

eW

Chapter 10: C Structures

257

menu_nextstate[1].state is defined as ST_AVRBF
nput is defined as KEY_NEXT

tstate[1].nextstate is defined as ST_AVRBF_REV

e can search this array of structures to find out what we need to do if we are in

w all we have to do is
nd out what we need to do if our next state is ST_AVRBF_REV, which we can

ntry. We see
at there is a function defined for this state, and equate the function pointer to it.

The

 part of which, depending on the
ate d to search the menu_state array. The following code snippit compares
e tate with the next state [if (nextstate != state)] and, being very

are the same. If the states differ, main() sets the
tate variable and then accesses the menu_state

ru y to change the current state to the next state.:

f te != state)

 for (i=0; pgm_read_byte(&menu_state[i].state); i++)
{

.state) == state)

 =(PGM_P)pgm_read_word(&menu_state[i].pText);
 c = (PGM_VOID_P)pgm_read_word(&menu_state[i].pFunc);

}
}

_REV to be the next state, so searching the array
uses the snippet to make the function pointer, pStateFunc, point to the Revision
nction.

 menu_nextstate[1].i
 menu_nex

W
the ST_AVRBF state and the input is KEY_NEXT, we find that particular
structure and see that the next state is ST_AVRBF_REV. No
fi
do by searching the menu_state array to find the ST_AVRBF_REV e
th

n we can call that function.

Clear so far?

The main() function slorps into an infinite loop,
st , is use

present sth
reasonable, does nothing if they
global state variable to the nexts
st cture arra

i (nextsta
{
 state = nextstate;

 if (pgm_read_byte(&menu_state[i]
 {
 statetext

pStateFun
 break;
 }

Since we took ST_AVRBF
ca
fu

Chapter 10: C Structures

258

hoa, there I was clicking right along and suddenly, I lost it; maybe its time to

all the states and transitions.
• We have code for searching each of these arrays. One finds the function

d with a given state and the other finds the next state to use given
nt state and the inputs.

 uint8_t i; // char i;

 input = getkey();

W
review what I’ve said so far?

• We have two data structures, one for storing the text and function
associated with a state and one for finding the next state given the current
state and the input.

• We have two structure arrays, one for each of the structures, which define

associate
the curre

Now how should we use this? We could sit in an infinite loop checking the inputs
and then looking at the current state and seeing if a transition to a new state is
called for. Hey, sounds like a plan. We could write our main() function as follows,
hopefully commented to crystal clarity:

unsigned char state; // holds the current state, according to
“menu.h”

int main(void)
{
 // Define our local copies of the state variables
 unsigned char nextstate;
 PGM_P statetext;
 char (*pStateFunc)(char);
 char input;

 // Define a loop counter

 // Initial state variables
 state = nextstate = ST_AVRBF;
 statetext = MT_AVRBF;
 pStateFunc = NULL;

 for (;;) // Main loop
 {
 // read the joystick buttons

Chapter 10: C Structures

259

d to
 {

 else if (input != KEY_NULL) // If not, and input not NULL

the StateMachine function to examine the
 // MENU_NEXTSTATE array to find the nextstate
 nextstate = StateMachine(state, input);
 }

 // Now we know what the next state is
 if (nextstate != state) // Do only if the state has changed
 {
 state = nextstate; // The state changed, so reset it

 // Read the MENU_STATE array until we find the entry
 // matching the current state
 for (i=0; pgm_read_byte(&menu_state[i].state); i++)
 {
 // If we find the entry
 if (pgm_read_byte(&menu_state[i].state) == state)
 {
 // We load the state variables from that entry
 statetext =(PGM_P)pgm_read_word(&menu_state[i].pText);
 pStateFunc
 =(PGM_VOID_P)pgm_read_word(&menu_state[i].pFunc);
 // And we exit the loop
 break;
 }
 // If we found an entry for the pStateFunc, we now loop
back
 // to the top were we run it.
 }
 }
 } //End Main loop

 return 0;
}

Of course, the actual Butterfly main() function does a lot of other stuff, but this
should help you understand the menu state machine part.

 if (pStateFunc) // If a state function is pointe

 // When a state function is pointed to, we must call it
 // and get the results as the nextstate variable
 nextstate = pStateFunc(input);
 }

 {
 // We call

Chapter 10: C Structures

I know, believe me I know. This is hard stuff, but you should be able to walk
through the Butterfly state machine code now and fully understand how it works.
If you don’t… well, maybe you want to back up to the pointers section and read
slowly till you are back here again. Don’t feel bad, C takes a while to get used to
and the guys who wrote the Butterfly software have very long, cold, and dark
winters to hunker down with little else to do other than get used to C
programming, well, there are the Reindeer…

260

Chapter 11 The Butterfly

Chapter 11 The Butterfly L

 LCD

261

CD

n all the little black bugs to run around
nd align themselves in such peculiar patterns. And that’s the extent of the detail

 of LCDs. We’ll concentrate instead on
sing C to train the little black bugs to do our tricks. If you must know the magic,

 application note: AVR065: LCD Driver for the STK502 and

even more intact we will begin by using software based on
ftwar on http://w i.a ni-

I read a book (I think it was David Brin’s ‘Practice Effect’) where some primitive
people found a digital watch with an LCD display. They were amazed that
whoever made the thing was able to trai
a
I’ll give on the underlying technology
u
then Atmel has an
AVR Butterfly available from their website that will get you deep into the gory
details. And the Atmega169 data book has a nice chapter ‘LCD Controller’ that is
a sure cure for insomnia.

To keep our ignorance

-Test sothe LCD e available ww.siwaw rubi.u
kl.de/avr_projects/#bf_app n in.c file begins with the confidence

debu - may not work

ang me shoehorning it all into a demonstrator
 it works just fin We use these func ons w thout attem to
nd them. Another way to say this is that we will enhance our productivity

 ec orient principle not

unctions at our disposal in LCD_functions module:

 LCD_putc(uint8 character
rites a character to the LCD digit

ar har scrollmode)
a string CD

o *pStr is a pointer to the string
o scrollmode is not used

id LCD_puts_f(con *pFlashStr, char scrollm ;
the L ring stored in fl

o *pFlashStr is a pointer to the flash string

oting that the ma
building:

// mt - used for gging only

However, with a few ch es and so
module,

ndersta
e. ti i pting

u
by reusing existing code
llowing ourselves to mess with perfectly good software.

and conform to obj t ed s by
a

F

• void _t digit, char);
o W

• void LCD_puts(ch *pStr, c ;
o Writes to the L

• vo st char ode)
o Writes to CD a st ash

Chapter 11 The Butterfly LCD

262

llmode is not used
id

olon(cha
 0 dis n, otherwise ables n

ntrast(char
Uses the value of input from 0 to 15 to set the contrast

our messenger p at we can tr B to
e LCD. We will also add commands to set the contrast, show/hide the

r the display, set the flash rate, and send strings with flashing
haracters.

Instead of running off willy-nilly and writing software, lets start with a short
specification of what we want to test from the PC users perspective.

We will test each function by sending the following command strings to the
Butterfly:

• PUTCdigitcharacter to test LCD_putc(uint8_t digit, char character);
o Send PUTCdigitcharacter where character is a char to be displayed

and digit is the LCD segment to display the input on. For example
PUTC6A will cause the character A to be displayed on the 6th LCD
digit.

o Verify function by seeing the correct char in the correct position
• PUTF to test LCD_puts_f(const char *pFlashStr, char scrollmode);

o Verify function by seeing the correct string on the LCD
• PUTSstring to test LCD_puts(char *pStr, char scrollmode);

o Send PUTSstring where string is a string to be displayed. For
example PUTSHello World! will cause the LCD to display ‘Hello
World!’.

o Verify function by seeing the correct string on the LCD
• CLEAR to test LCD_Clear(void);

o scro
• void LCD_Clear(vo);

o Clears the LCD
void LCD_C• r show);

oloo If show = ables C en Colo
• char SetCo input);

o

PC to LCD test program

Lets modify

y on th
rogram so th send s ings to the utterfly

displa
colon, clea
c

Chapter 11 The Butterfly LCD

o Send CLEAR while displaying text on th
o Verify function by seeing the LCD clear

263

e LCD

reuse that to call the functions on

o

o Load the string and point pStr to it.
o Call LCD_puts(*pStr, scrollmode);
o Send “Called LCD_puts with ‘string’” to the PC where string is the

string sent.
• CLEAR

o Call LCD_Clear();
o Send “Called “LCD_Clear()” to the PC

• COLON#
o If # == 1 call LCD_Colon(1);
o E
o Send “Called LCD_Colon” to the PC where # is the one sent.

• SETC##
o Convert ## characters to a numerical value ‘input’
o Call SetContrast(input);

• COLON to test LCD_Colon(char show);
o Send COLON,on/off where on/off is either ON or OFF
o Verify function by seeing colons on LCD turn on or off

• SETC## to test char SetContrast(char input);
o Send SETC## where ## is from 0 to 15 and sets the contrast.

We will use this to design the functions needed on the Butterfly. We already have
 command processor designed, so we will a

receipt of the correct command.

• PUTCdigitcharacter
o Call LCD_putc(digit, character);

Send “Called LCD_putc” to PC where # are the values sent in
decimal

• PUTF
o Set a pointer, *pFlashStr, to a string in flash
o Call LCD_puts_f(*pFlashStr, scrollmode);
o Send “Called LCD_puts_f” to the PC.

• PUTSstring

lse if # == 0 call LCD_Colon(0);

Chapter 11 The Butterfly LCD

264

o Send “Called SetContrast to the PC where # is the decimal number
sent.

NOTE: In LCD_driver.c must comment out #include “main.h”

Now that we have our specification we can run off willy-nilly and write the
software.

We write the Demonstrator.h file:

// Demonstrator.h LCD demo version
void initializer(void);
void parseInput(char *);

include "Demonstrator.h"

DEMO[] PROGMEM = "'LCD' demo.\r\r\0";

And the Demonstrator.c file:

// Demonstrator.c LCD demo version

#include "PC_Comm.h"
#
#include "LCD_test.h"
#include "LCD_driver.h"
#include "LCD_functions.h"

// identify yourself specifically
const char TALKING_TO[] PROGMEM = "\r\rYou are talking to the \0";
const char WHO_

// bad command
const char BAD_COMMAND1[] PROGMEM = "\rYou sent: '\0";
const char BAD_COMMAND2[] PROGMEM = "' - I don't understand.\r\0";

const char LCD_START_msg[] PROGMEM = "LCD demo\0";

void initializer()
{
 // Calibrate the oscillator:
 OSCCAL_calibration();

 // Initialize the USART
 USARTinit();

 // initialize the LCD
 LCD_Init();

 // Display instructions on PC

Chapter 11 The Butterfly LCD

265

sendFString(TALKING_TO);
sendFString(WHO_DEMO);

 LCD_puts_f(LCD_START_msg, 1);

}

void parseInput(char s[])
{
 // parse first character
 switch (s[0])
 {
 case 'd':
 if((s[1] == 'e') && (s[2] == 'm') && (s[3] == 'o') && (s[4] == '?'))
 sendFString(TALKING_TO);
 sendFString(WHO_DEMO);
 break;
 case 'C':
 if((s[1] == 'L') && (s[2] == 'E') && (s[3] == 'A') && (s[4] == 'R'))
 OnCLEAR();
 else if ((s[1] == 'O')&&(s[2] == 'L')&&(s[3] == 'O')&&(s[4] == 'N'))
 OnCOLON(s);
 break;
 case 'P' :
 if((s[1] == 'U') && (s[2] == 'T') && (s[3] == 'C'))
 OnPUTC(s);
 else if((s[1] == 'U') && (s[2] == 'T') && (s[3] == 'F'))
 OnPUTF(s);
 else if((s[1] == 'U') && (s[2] == 'T') && (s[3] == 'S'))
 OnPUTS(s);
 break;
 case 'S' :
 if((s[1]== C')&&(s[2 =='R')&&(s[3]=='O')&&(s[4]=='L')&&(s[5] == 'L'))
 OnSCROLL(s);
 else if((s[1] == 'E') && (s[2] == 'T') && (s[3] == 'C'))
 OnSETC(s);
 break;
 default:
 sendFString(BAD_COMMAND1);
 sendChar(s[0]);
 sendFString(BAD_COMMAND2);
 break;

 s[0] = '\0';
 }
}

We write, the Messenges.h, LCD_test.h and LCD_test.c files:

// Messages.h

Chapter 11 The Butterfly LCD

// LCD test messages
const char PUTF_msg[] PROGMEM = "Called LCD_puts_f \0";
const char PUTS_msg[] PROGMEM = "Called LCD_puts with \0";
const char PUTC_msg[] PROGMEM = "Called LCD_putc\r\0";
const char CLEAR_msg[] PROGMEM = "LCD_Clear()\r\0";
const char COLON_msg[] PROGMEM = "Called LCD_Colon\r\0";
const char SETC_msg[] PROGMEM = "Called SetContrast\r\0";
const char SCROLL_msg[] PROGMEM = "Called OnScroll\r\0";

// LCD_test.h

void OnPUTF(char *PUTFstr);
void OnPUTS(char *pStr);
void OnPUTC(char *PUTCstr);
void OnCLEAR(void);
void OnCOLON(char *pOnoff);
void OnSETC(char *SETCstr);
void OnSCROLL(char *SCROLL);

// LCD_test.c
#include "LCD_driver.h"
#include "LCD_functions.h"
#include "LCD_test.h"
#include "PC_Comm.h"
#include "Messages.h"

// Start-up delay before scrolling a string over the LCD. "LCD_driver.c"
extern char gLCD_Start_Scroll_Timer;

//PUTF,#
//Verify that # represents a valid string in flash.
//Set the pFlashStr pointer to the string
//Call LCD_puts_f(*pFlashStr, scrollmode);
//Send "Called LCD_puts_f" to the PC
void OnPUTF(char *PUTFstr)
{
 sendFString(PUTF_msg);

 PGM_P text;

 text = PSTR("LCD_put_f test\0"); // won't show the _

 LCD_puts_f(text, 1);
}

//PUTS,string
//Load the string and point pStr to it.
//Call LCD_puts(*pStr, scrollmode);

266

Chapter 11 The Butterfly LCD

//Send "Called LCD_puts with 'string'" to the
void OnPUTS(char *pStr)

267

PC.

LCD_puts(&pStr[4],0); //Overlook the PUTS part of the string

/Send "Called LCD_putc" to PC.
(char *PUTCstr)

it;

 LCD_putc(digit,PUTCstr[5]);

/If ON call LCD_Colon(1);

oid OnCOLON(char *pOnoff)

if(pOnoff[5] == '1')

{
 sendFString(PUTS_msg);
 sendString(pStr);

}

//PUTC,digit,character
//Call LCD_putc(digit, character);
/
void OnPUTC
{
 uint8_t dig

 sendFString(PUTC_msg);

 digit = (uint8_t)(PUTCstr[4] - 48);// convert to integer

 if(digit <= 6)

{

 LCD_UpdateRequired(1,0);

}

}

//CLEAR
//Call LCD_Clear();
//Send "Called "LCD_Clear()" to the PC
void OnCLEAR(void)
 {
 sendFString(CLEAR_msg);
 LCD_Clear();
}

//COLON,on/off
//Verify that on/off is either "ON" or "OFF"
/
//Else call LCD_Colon(0);
//Send "Called LCD_Colon" to the PC.
v
{
 sendFString(COLON_msg);

 {
 LCD_Colon(1);

Chapter 11 The Butterfly LCD

268

}

/SETC

oid OnSETC(char *SETCstr)

temp[1] = SETCstr[5];

 y size

D_ art_S roll_ e scrolling

}

 else if (pOnoff[5] == '0')
 {
 LCD_Colon(0);
 }

}

/
//Call SetContrast(input);
//Send "Called SetContrast(#) to the PC where # is the decimal number
//sent. Note values are from 0 to 15
v
{
 char temp[] = {'\0','\0','\0'};
 int input;

sendFString(SETC_msg);

 temp[0] = SETCstr[4];

 input = atoi(temp);

 SetContrast(input);

}

// SCROLL
// Start scroll if input == 1
// Stop scroll if input == 0
// Send “Called OnScroll” to the PC
oid OnSCROLL(char *scroll) v
{
 sendFString(SCROLL_msg);

if(scroll[6] == '1')
 {
 gScrollMode = 1; // Scroll if text is longer than displa

ro = 0; gSc ll
 gLC St c Timer = 3; //Start-up delay befor
 }
 else if (scroll[6] == '0')

{
 gScrollMode = 0;
 gScroll = 0;

 }

Chapter 11 The Butterfly LCD

269

 with:

river and LCD_functions .h and .c files are in the
me directory as the rest. Compile and download as usual.

pen Bray’s Terminal and connect to the Butterfly. You should see:

You are talking to the 'LCD' demo.

LL1

ill stop scrolling the AB. Type in:

Modify the makefile

SRC += Demonstrator.c \
CD_test.c \ L
LCD_driver.c \
LCD_functions.c

And we make sure the LCD_d
sa

O

And the Butterfly LCD will be scrolling “LCD DEMO”

In the output window of Bray’s Terminal type:

CLEAR

The LCD will clear. Now type:

PUTC0A
PUTC1B

And you will see AB on the LCD. Type in:

SCRO

And the LCD will scroll the AB. Type in:

SCROLL0

And the LCD w

PUTF

And the LCD will show:

Chapter 11 The Butterfly LCD

270

isn’t
hown on the LCD because there isn’t one in the LCD character set. However,

 have this character sense all you have to do us use
 they say, will be left to the

tudent. (Teachers make this statement not because they want to educate the
at’s just

e.)

that much of C programming for microcontrollers uses various
ricks’ to modify C to be more efficient for a specific microcontroller and a

ese tricks are often found by reading programs written by
xperienced programmers. You have access to the Butterfly software as modified

2 .zip, and I suggest you read it since
ese guys are the real experts. But do be careful. One of the main reasons to use

 so be sure you make you tricks easily retrickable for
ther systems.

u’re familiar with C and the Butterfly software, go to the WinAVR
irectory and find the avr_libc user manual. At 185 pages, it provides excellent

f the Standard C Library for the ATMEL’s
VR. It also provides some other goodies, such as start up examples and good

solid example code to learn from. Since, they did such a good job documenting
this resource, I’ll go no further, other than to say that this library will likely
become an indispensable tool for your programming future.

Well, I hope you met your goals for using this book.

You should have gained a basic understanding microcontroller architecture. You
should have an intermediate understanding of the C programming language. You
should be able to use the WinAVR and AVRStudio tools to build programs. You
should be able to use C to develop microcontroller functions such as: Port Inputs
and Outputs, read a joystick, use timers, program Real Time Clocks, communicate

LCD PUT F TEST

Notice that the message in flash was ‘LCD put_f test’ but the underline
s
there is no good reason not to
the bottom most little black bug, an exercise that, as
s
student, but because they are too lazy to do it themselves. Or maybe th
m

Conclusion
You will find
‘t
specific compiler. Th
e
by the folks using WinAVR, bf_gcc_20031 05
th
C is to write portable code,
o

Now that yo
d
documentation for the avr_libc subset o
A

Chapter 11 The Butterfly L

with PC, conduct analog to digital and dig
temperature, light, and voltage, control motor

CD

271

ital to analog conversions, measure
s, control an LCD.

our

If I was successful in helping you achieve these goals, after you tell all y
friends, you might want to keep tabs of my website: www.smileymicros.com to
see what other good stuff is available.

Happy programming!

Appendix 1: Project Kits

Appendix 1: Project Kits

Note: check t

273

he website: www.smileymicros.com to see if any of these items
de shipping and handling in

 the
onal
nny.

are available there for less (don’t forget to inclu
your calculations when figuring ‘less’).

Parts Lists (Prices for Spring 2005):

From Digi-Key:
Note: Digi-Key charges a $5 handling charge on all orders under $25. Since
AVR Butterfly is $19.99 they add the $5 charge, but if you buy $5.01 additi
items, they drop the $5 handling charge, giving you $5 worth of stuff for a pe
So add $1.84 of extra parts to the order and get $5 free. I like free, don’t you?

Description Part Number Quan Price/Unit Total
AVR Butterfly ATAVRBFLY-ND 1 19.99 19.99
D-SUB 9 female solder cup 209F-ND 1 0.63 0.63
Female header single 2 pin S4002-ND 1 0.21 0.21
Female header single 3 pin S4003-ND 1 0.30 0.30
Female header single 4 pin S4004-ND 1 0.39 0.39
Female header double 10 pin S4205-ND 2 0.82 1.64

Subtotal 23.16

MORE STUFF – see note Your choice - see note 1.84

Total 25.00

From JAMECO:
Description Part Number Quan Price/Unit Total
Breadboard 20722CP 1 8.95 8.95
Wire cutter striper 127870 1 5.49 5.49
22 awg 100’ white solid wire 36880 1 5.49 5.49
Battery holder – 2 size D 216389 1 0.89 0.89
Switch 204142 1 0.39 0.39

Data I/O
LEDs red 11797 10 0.19 1.90
Resistors 330 Ohm 1/8 watt 107967 100 0.0069 0.69

Appendix 1: Project Kits

274

8 position DIP switch 30842 1 0.89 0.89
Potentiometer – 10 kOhm 264410 1 1.18 1.18

PWM Motor Control
Motor 231896CA 1 0.99 0.99
Power Transistor – TIP115 288526 1 0.48 0.48
Optoisolator – 4N28 41013 1 0.46 0.46
Diode – 1N4001 35975CA 10 0.03 0.30
9v Connector 216451 1 0.34 0.34
Slotted Interrupter – H21A1 114091CL 1 0.69 0.69
2.2 k Ohm resistor 108054 100 0.0069 0.69

Solder Kit
Description Part Number Quan Price/Unit Total
Soldering iron 208987 1 2.99 2.99
Solder 170456 1 1.39 1.39
Solder wick 410801 1 1.49 1.49

Appendix 2: Soldering Tutorial

Appendix 2: Soldering Tutorial

275

ve got a pretty good soldering station that I inherited from a company that I
worked for that went belly-up. They coul n’t pay me for the last month’s work I
did, so they let me load up on equipment which was either generous of them or
saved them from paying to have it hauled off. But since this text is trying to get
the most educational value for the least educational buck, I thought I’d get the
cheapest soldering iron I could find and see if it would work well enough for
student use. The iron in Figure 40 was less than three bucks from JAMECO and
worked just fine.

First warning: these things get hot, cause fires, and char skin. If you burn yourself
more than once, join the club. Some of us are just harder to train. Saying don’t set
up your soldering station near anything flammable, seems silly, but remember, my
nickname is Smokey Joe and there are reasons for that.

Second warning: the solder has a rosin core and produces a nice trail of smoke
that contains God-knows-what kind of chemicals and heavy metals. This smoke is
very intelligent and will head straight for your nose. If you want to see real magic
at work, try changing your position and soldering techniques to avoid the smoke:
nothing works! Smart smoke will find you. Use a cheap fan to blow away from
your soldering area and share the toxic crap with everybody in the room.

I’ve also included solder wick on the JAMECO list. This is braided copper wire
and does what its name implies, it wicks solder. Just stick it to the bad glob you
want to remove, heat it up and watch the power of capillary action and note that
your are holding the copper between your thumb and forefinger about one inch
from the tip of the soldering iron which quickly teaches you that copper is a poor
insulator. Yeouch… is a common soldering term.

I’

d

Appendix 2: Soldering Tutorial

Figure 40: Cheap soldering iron, solder and wick from JAMECO

Figure 41: Seasoning the tip

When you first plug in your soldering iron stand by with the solder and as soon as
the tip heats up (takes a while on a cheap iron) liberally coat it with solder as
shown in Figure 41. The rest of the tip will rapidly loose its shiny newness and
develop a burned look. The seasoned part will remain shiny and useful.

Get an old cellulose or natural sponge to use to clean the excess solder off the tip.
Keep it moist and when the tip gets crapped up with charred resin, circuit board,
and finger-burn goo, just wipe it on the sponge and … ssssssttt… it’s all clean and
shiny again. Don’t use a synthetic sponge unless you really like the stench of
burning plastic.

276

Appendix 2: Soldering Tutor

ow go and scrounge some broken circuit board

ial

277

s from a dumpster somewhere.
and
 is

e.
to

s a
older. This isn’t rocket science; you should be an expert in a couple of

l that we won’t be using any surface mount parts. That

N
You might have to bust open some discarded electronic device, the older
cheaper the better. Now look at those solder joins. That’s what a good join
supposed to look like. It looks like the solder melted, adhered, and slumped
around whatever it is on. Now use the wick to clean off some joins, and then try
to resolder them. Heat the join area and put the solder to it. Don’t heat the solder
and stick it to the join. Don’t take too long, get it on and get the tip away. ‘Too
long’ is subjective, just get the join soldered as quickly as possible. Piece of cak
If your join is bulbous or looks like it is sitting on the join and didn’t slump in
it, it is a bad solder. If it looks dull and crinkly rather than smooth and shiny, it i

ad sb
minutes. And be thankfu
ain’t easy to do with a cheap iron.

Appendix 3: Debugging Tale

279

Appendix 3: Debugging Tale

Sometimes you have to search high and low to find out what a something really
means. For instance, we often see the sbi() function, as in Butterfly main.c:

 sbi(DDRB, 5); // set OC1A as output
 sbi(PORTB, 5); // set OC1A high

We search around a while and eventually in sfr_def.h we find:

/** \def sbi
 \ingroup avr_sfr
 \deprecated
 \code #include <avr/io.h>\endcode
 For backwards compatibility only. This macro will eventually be removed.

 S b

#define sbi(sfr, bit) (_SFR_BYTE(sfr) |= _BV(bit))

his means that sbi() is not a function, it’s a macro, and a deprecated one at that.
y deprecation, they mean that we shouldn’t use in and eventually it may go

away. To understand what it does though, we need to find the definition of
SFR_BYTE(sfr) and _BV(bit) and we can now guess these aren’t functions, but
macros. More searching and in the same header we find:

#define _SFR_BYTE(sfr) _MMIO_BYTE(_SFR_ADDR(sfr))

Hmmm… that’s not a lot of help so more searching to find out what
_MMIO_BYTE and _SFR_ADDR mean. In the same header we find:

#define _MMIO_BYTE(mem_addr) (*(volatile uint8_t *)(mem_addr))

Okay, we still don’t know. So we look for uint8_t, which is tucked away in the
bf_gcc directory readme.txt:

- changed some char to uint8_t to avoid compiler warnings.

et it \c bit in IO register \c sfr. */

T
B

Appendix 3: Debugging Tale

280

ow we can speculate that uint8_t is a char. I say speculate because going further
wo
guess t
figure tion can be quite dense.
Let

_M O pointer to a volatile
cha o

Backing up a bit we look at the _SFR
_M O t is
a _SFR_ADDR?

#de e

Which nd:

#define _SFR_MEM_ADDR(sfr) ((uint16_t) &(sfr))

o

e had: _SFR_BYTE(sfr)
which is and alias for: _MMIO_BYTE(_SFR_ADDR(sfr))

the _ SFR_ADDR aliased _MMIO_BYTE(_SFR_MEM_ADDR(sfr))
that aliased _MMIO_BYTE(((uint16_t) &(sfr)))

and _MMIO_BYTE aliased (*(volatile uint8_t *)(((uint16_t) &(sfr))))

which we can substitute for the _SFR_BYTE(sfr) in the sbi macro

#define sbi(sfr, bit) (_SFR_BYTE(sfr) |= _BV(bit))

N

uld require poking around in the gcc compiler stuff, and I’d rather live with my
han suffer that. Anyway, I’ve already lost track of what I was trying to
out in the first place. All theses layers of decep

’s state what we found.

MI _BYTE is a macro that declares mem_addr to be a
r p inter. I’m getting scared, how about you?

_BYTE macro and see that it provides
MI _BYTE with a mem_addr of the type _SFR_ADDR. Oh, bother. Wha

 Well, in sfr_defs.h we find:

fin _SFR_ADDR(sfr) _SFR_MEM_ADDR(sfr)

es ADDR and fido n’t help so we look for _SFR_MEM_

We now know that _SFR_ADDR is an alias for _SFR_MEM_ADDR which is
macro to declare sfr as a uint16_t, and we’ll guess that’s a 16 bit integer. What the
heck is the & for? Let’s do some substitutions. If you remember we were trying t
understand the meaning of the sbi macro and it had _SFR_BYTE(sfr) in it so:

W

Appen

define sbi(

dix 3: Debugging Tale

281

ubstitution yields:

sfr, bit) ((*(volatile uint8_t *)(((uint16_t) &(sfr)))) |= _BV(bit))

t *)(((

impleme
n that m
ed reg
dress
mory
ed v
ed ea

bi:

 high

RTB

RTB

RTB

S

#

And _BV is? In pgmspace.h it is:

#define _BV(bit) (1 << (bit))

More substitiuton yields:

#define sbi(sfr, bit) ((*(volatile uint8_ uint16_t) &(sfr)))) |= (1 << (bit)))

ntation specific type qualifier that
ight, in our case, screw things up if
ters. W

By the by, what’s a volatile? It is an
tells a complier to suppress optimizatio
we are using pointers to memory mapp is e don’t want the compiler to
help us by using some other memory ad

e
 since a register is hardwired into the

machine and though addressed like m , isn’t ordinary memory. Volatile also
tells the compiler that that the so modifi ariable can change unexpectedly (like
by an interrupt) so it needs to be check
s

ch time it is used and not just stored
omewhere like on the stack.

More substitution for an actual use of s

 sbi(PORTB, 5); // set OC1A

yields:

O ((*(volatile uint8_t *)(((uint16_t) &(P)))) |= (1 << (5)))

But the complier doesn’t know what PO is. What is it?

From io169.h

O#define PORTB _SFR_IO8(0x05)/* P */

and _SFR_IO8 id defined in sfrdefs.h:

Appendix 3: Debugging Tale

282

BYTE

_BYT

x05) + 0x20)

olatile uint8_t *)((0x05) + 0x20))

(*(vol

gh

(volat

#define _SFR_IO8(io_addr) _MMIO_ ((io_addr) + 0x20)

Goody, we already know what _MMIO E is so we can do substitutions:

PORTB is _SFR_IO8(0x05)
_SFR_IO8(0x05) is _MMIO_BYTE((0

_MMIO_BYTE((0x05) + 0x20) is (*(v

yields:

 ((*(volatile uint8_t *)(((uint16_t) &(atile uint8_t *)((0x05) + 0x20))))))
|= (1 << (5)))

What we wrote was:

sbi(PORTB, 5); // set OC1A hi

What the compiler sees is:

((*(volatile uint8_t *)(((uint16_t) &((* ile uint8_t *)((0x05) + 0x20)))))) |=
(1 << (5)))

Aren’t you glad you aren’t a compiler?

Appendix 4: ASCII Table

283

ble

 Char

 @
 A

(s 0x02 | " 34 0x22 | B
 C
 D

(e | E
(ack) 6 0x06 | & 38 0x26 | F 70 0x46 | f 102 0x66

 G
 H
 I
 J
| K
 L
 M

(s | N
(s | O

 P
 Q
 R
 S
 T
 U
 V 0x76

(etb) 23 0x17 | 7 55 0x37 | W
0 | X

 Y
 Z
 [91 0x5b | { 123 0x7b
 \ 92 0x5c | | 124 0x7c
] 93 0x5d | } 125 0x7d
 ^
 _

equen

Appendix 4: ASCII Ta
Table 9: ASCII Table
Char Dec Hex | Char Dec Hex | Dec Hex | Char Dec Hex
----------------------------------- -----------------------------
(nul) 0 0x00 | (sp) 32 0x20 |
(soh) 1 0x01 | ! 33 0x21 |
tx) 2

 64 0x40 | ` 96 0x60
 65 0x41 | a 97 0x61
 66 0x42 | b 98 0x62
 67 0x43 | c 99 0x63
 68 0x44 | d 100 0x64
 69 0x45 | e 101 0x65

(etx) 3 0x03 | # 35 0x23 |
(eot) 4 0x04 | $ 36 0x24 |
nq) 5 0x05 | % 37 0x25

(bel) 7 0x07 | ' 39 0x27 | 71 0x47 | g 103 0x67
 72 0x(bs) 8 0x08 | (40 0x28 |

(ht) 9 0x09 |) 41 0x29 |
48 | h 104 0x68

 73 0x49 | i 105 0x69
(nl) 10 0x0a | * 42 0x2a |
(vt) 11 0x0b | + 43 0x2b

 74 0x4a | j 106 0x6a
 75 0x4b | k 107 0x6b
 76 0x4c | l 108 0x6c (np) 12 0x0c | , 44 0x2c |

(cr) 13 0x0d | - 45 0x2d |
o) 14 0x0e | . 46 0x2e
i) 15 0x0f | / 47 0x2f
le) 1

 77 0x4d | m 109 0x6d
 78 0x4e | n 110 0x6e
 79 0x4f | o 111 0x6f

(d 6 0x10 | 0 48 0x30 |
(dc1) 17 0x11 | 1 49 0x31 |

 80 0x50 | p 112 0x70
 81 0x51 | q 113 0x71

(dc2) 18 0x12 | 2 50 0x32 | 82 0x52 | r 114 0x72
(dc3) 19 0x13 | 3 51 0x33 | 83 0x53 | s 115 0x73
(dc4) 20 0x14 | 4 52 0x34 |
(nak) 21 0x15 | 5 53 0x35 |

 84 0x54 | t 116 0x74
 85 0x55 | u 117 0x75
 86 0x56 | v 118 (syn) 22 0x16 | 6 54 0x36 |

 87 0x57 | w 119 0x77
 88 0x58 | x 120 0x78 (can) 24 x18 | 8 56 0x38

(em) 25 0x19 | 9 57 0x39 | 89 0x59 | y 121 0x79
(sub) 26 0x1a | : 58 0x3a | 90 0x5a | z 122 0x7a

 (esc) 27 0x1b | ; 59 0x3b |
(fs) 28 0x1c | < 60 0x3c |
(gs) 29 0x1d | = 61 0x3d |
(rs) 30 0x1e | > 62 0x3e | 94 0x5e | ~ 126 0x7e
(us) 31 0x1f | ? 63 0x3f |

 95 0x5f | (del) 127 0x7f

ASCII Name Description C Escape S ce
nul null byte \0
bel bell character \a
bs backspace \b
ht horizontal tab \t
np formfeed \f
nl newline \n
cr carriage return \r
vt vertical tab
esc escape

sp space

Appendix 5: Decimal, Hexadecimal, and Binary

Appendix 5: Decimal, Hexadecimal, and
Binary
Table 10: Decimal, Hexadecimal, and Binary Conversion
Dec Hex Bin Dec Hex Bin Dec Hex Bin Dec Hex Bin
0 0 00000000 64 40 01000000 128 80 10000000 192 c0 11000000
1 1 00000001 65 41 01000001 129 81 10000001 193 c1 11000001
2 2 00000010 66 42 01000010 130 82 10000010 194 c2 11000010
3 3 00000011 67 43 01000011 131 83 10000011 195 c3 11000011
4 4 00000100 68 44 01000100 132 84 10000100 196 c4 11000100
5 5 00000101 69 45 01000101 133 85 10000101 197 c5 11000101
6 6 00000110 70 46 01000110 134 86 10000110 198 c6 11000110
7 7 00000111 71 47 01000111 135 87 10000111 199 c7 11000111
8 8 00001000 72 48 01001000 136 88 10001000 200 c8 11001000
9 9 00001001 73 49 01001001 137 89 10001001 201 c9 11001001
10 a 00001010 74 4a 01001010 138 8a 10001010 202 ca 11001010
11 b 00001011 75 4b 01001011 139 8b 10001011 203 cb 11001011
12 c 00001100 76 4c 01001100 140 8c 10001100 204 cc 11001100
13 d 00001101 77 4d 01001101 141 8d 10001101 205 cd 11001101
14 e 00001110 78 4e 01001110 142 8e 10001110 206 ce 11001110
5 f 00001111 79 4f 01001111 14 8f 10001111 207 cf 11001111
6 10 00010000 80 50 01010000 144 90 10010000 208 d0 11010000
17 11 00010001 81 51 01010001 145 91 10010001 209 d1 11010001
18 12 00010010 82 52 01010010 146 92 10010010 210 d2 11010010
19 13 00010011 83 53 01010011 147 93 10010011 211 d3 11010011
20 14 00010100 84 54 01010100 148 94 10010100 212 d4 11010100
21 15 00010101 85 55 01010101 149 95 10010101 213 d5 11010101
22 16 00010110 86 56 01010110 150 96 10010110 214 d6 11010110
23 17 00010111 87 57 01010111 151 97 10010111 215 d7 11010111
24 18 00011000 88 58 01011000 152 98 10011000 216 d8 11011000
25 19 00011001 89 59 01011001 153 99 10011001 217 d9 11011001
26 1a 00011010 90 5a 01011010 154 9a 10011010 218 da 11011010
27 1b 00011011 91 5b 01011011 155 9b 10011011 219 db 11011011
28 1c 00011100 92 5c 01011100 156 9c 10011100 220 dc 11011100
29 1d 00011101 93 5d 01011101 157 9d 10011101 221 dd 11011101
30 1e 00011110 94 5e 01011110 158 9e 10011110 222 de 11011110
31 1f 00011111 95 5f 01011111 159 9f 10011111 223 df 11011111
32 20 00100000 96 60 01100000 160 a0 10100000 224 e0 11100000
33 21 00100001 97 61 01100001 161 a1 10100001 225 e1 11100001
34 22 00100010 98 62 01100010 162 a2 10100010 226 e2 11100010
35 23 00100011 99 63 01100011 163 a3 10100011 227 e3 11100011
36 24 00100100 100 64 01100100 164 a4 10100100 228 e4 11100100
37 25 00100101 101 65 01100101 165 a5 10100101 229 e5 11100101
38 26 00100110 102 66 01100110 166 a6 10100110 230 e6 11100110
39 27 00100111 103 67 01100111 167 a7 10100111 231 e7 11100111
40 28 00101000 104 68 01101000 168 a8 10101000 232 e8 11101000
41 29 00101001 105 69 01101001 169 a9 10101001 233 e9 11101001
42 2a 00101010 106 6a 01101010 170 aa 10101010 234 ea 11101010

1
1

3

285

Appendix 5: Decimal, Hexadecimal, and Binary

4
4
3 2b 00101011 107 6b 01101011 171 ab 10101011 235 eb 11101011
4 2c 00101100 108 6c 01101100 172 ac 10101100 236 ec 11101100
45 2d 00101101 109 6d 01101101 173 ad 10101101 237 ed 11101101
46 2e 00101110 110 6e 01101110 174 ae 10101110 238 ee 11101110
47 2f 00101111 111 6f 01101111 175 af 10101111 239 ef 11101111
48 30 00110000 112 70 01110000 176 b0 10110000 240 f0 11110000
49 31 00110001 113 71 01110001 177 b1 10110001 241 f1 11110001
50 32 00110010 114 72 01110010 178 b2 10110010 242 f2 11110010
51 33 00110011 115 73 01110011 179 b3 10110011 243 f3 11110011
52 34 00110100 116 74 01110100 180 b4 10110100 244 f4 11110100
53 35 00110101 117 75 01110101 181 b5 10110101 245 f5 11110101
54 36 00110110 118 76 01110110 182 b6 10110110 246 f6 11110110
55 37 00110111 119 77 01110111 183 b7 10110111 247 f7 11110111
56 38 00111000 120 78 01111000 184 b8 10111000 248 f8 11111000
57 39 00111001 121 79 01111001 185 b9 10111001 249 f9 11111001
58 3a 00111010 122 7a 01111010 186 ba 10111010 250 fa 11111010
59 3b 00111011 123 7b 01111011 187 bb 10111011 251 fb 11111011
60 3c 00111100 124 7c 01111100 188 bc 10111100 252 fc 11111100
61 3d 00111101 125 7d 01111101 189 bd 10111101 253 fd 11111101
62 3e 00111110 126 7e 01111110 190 be 10111110 254 fe 11111110
63 3f 00111111 127 7f 01111111 191 bf 10111111 255 ff 11111111

286

Appendix 6: Motor Speed Control Wheel

287

Appendix 6: Motor Speed Control Wheel

Appendix 7: HyperTerminal

289

Appendix 7: HyperTerminal

This book origianally used HyperTerminal for PC communications, but some
folks were so adamant in their revulsion of HyperTerminal that I had to finally
admit that maybe this wasn’t just the pervasive hatred of MicroSoft, but was due
to HyperTerminal itself. It is very hard to get set up and going properly and some
folks said it was buggy and unreliable. I received permission from Br@y++ to use
his terminal so that is the one shown in the Quick Start Section. The remaining
sections still have illustrations from HyperTerminal, but you can and probably
should use Bray’s Terminal since it is simple and lots of folks love it. Both are
free.

Test Your Connection:
The Butterfly comes with built-in code that allows you to communicate with a PC
COM Port to change “Your name”. This is a good way to see if your hardware is
working like it should be.

• Connect an RS-232 cable between your Butterfly and your PC as in Figure
10. Open HyperTerminal
• On you PC taskbar GOTO Start, Programs, Accessories,

Communications and click on HyperTerminal, then take a deep breath,
because HyperTerminal was not really designed with your use in mind,
so it can be confusing (but it IS free).

• Where it asks for a new connection name, call it Thunderfly or
something equally memorable, and select the least dorky icon you can
find in the list. I favor the atom next to the phone, because it makes no
sense whatever.

Appendix 7: HyperTerminal

290

• The ‘New Connections Properties’ window opens and select the COM
Port you are connected to:

• If you don’t know what Com Port you are connected to:
• Your computer’s manual will tell which COM Port you are using. But

since you’ve lost your manual…
• Click the start button
• Click the settings button
• Click the control panel button
• (If you are using XP, hunt around, it’s all there somewhere)
• In the control panel, click the System button
• Depending on your OS, hunt for the Hardware panel, and then click

the Device Manager button (Why does Microsoft have to do this
differently on every OS?)

• In the Device Manager, expand the Ports(COM & LPT)
• If fortune smiles, you’ll only have one COM Port and it will be

COM1.
• If you have multiple COM Ports that aren’t being used, then go find

that darn manual! Or look at you connections on the back of your PC
and hope one of them is labeled, or just plug it in an guess which COM
Port it is connected to. If you guess wrong, just try the next one
COM1, COM2, COM3… until it works, and next time you buy a PC,
put the manual somewhere that you can find it.

Appendix 7: HyperTerminal

291

• Set the COM Port communications parameters:
• Bits per second to 19200, data bits to 8, parity to None, stop bits to 1,

and flow control to None

• Click OK and the Properties Window appears, click the Settings tab.

Appendix 7: HyperTerminal

292

• And the ASCII Setup button, and fill out that Window as below:

• By now you are almost surely as sick of HyperTerminal as I am, but if
you’ve done everything right (and if you are like me, you haven’t) you’re
ready to program “Your Name” in the Butterfly.

• On the Butterfly click the joystick down until you see NAME.
• Click the joystick right to “ENTER NAME”
• Click the joystick down to “DOWNLOAD NAME”
• Center the joystick and press it. (By the way, do you know where the term

‘joystick’ comes from?) The message “WAITNG FOR INPUT ON
RS232” appears on the LCD.

• Return to the PC and HyperTerminal. Type ‘Hello world’ and hit enter.

Appendix 7: HyperTerminal

293

• You’ll now see your message scrolling across the Butterfly LCD. If not,
notice that you have three areas that you can mess up:
• Soldering and connecting the RS232
• Selecting the correct COM Port
• Setting up HyperTerminal properly

So if its not working by this point go back and meticulously retry everything you
can think of, including passing a dead chicken over the setup while chanting
voodoo hymns. It took me a while to get all this running and I supposedly know
what I’m doing, so don’t feel bad if this is a little harder than you might hope.
(You get what you pay for)

Index

295

Index

- ... 51
-- ... 51
! ... 52
!= ... 52
#define .. 94
#include .. 94
% ... 51
%=.. 61
& 51, 53, 56
&& ... 52
&=.. 61
() ... 52
* ... 51
*= ... 61
, ... 52
. ... 51
/ ... 51
/= ... 61
?: ... 52
[] ... 51
^ ... 53
^= ... 61
| ... 53, 56
|| ... 52
|= ... 61
~ ... 53
+ ... 51
++... 51
+=... 61
< ... 52
<<... 53
<<=... 61
<=... 52
= ... 61

-= ... 61
==... 52
> ... 52
-> ... 51
>=... 52
>>... 53
>>=... 61
ADC 21, 207, 208, 212, 213, 214,

215, 216, 217, 218, 219, 220, 221,
222, 223, 225, 227, 231, 233, 236,
237

Addition.. 51
Address of....................................... 51
Addresses of variables................. 153
Analog to Digital Conversion 210
Arithmetic Operators..................... 50
Array element.................................. 51
array of pointers to arrays............ 172
Arrays 153, 159
Arrays in RAM and ROM........... 171
ASCII 82, 181, 283
assembly language 12, 13, 154
Assignment Operators 61
Associativity.................................. 62
ATMEGA169 15, 17, 20, 31, 66, 248
atoi... 81
AVRStudio..... 19, 20, 31, 35, 68, 150
BCD - Binary Coded Decimal .. 180
binary.. 43, 45, 46, 47, 48, 53, 54, 59,

75, 154, 186, 212, 249
Binary Coded Decimal 180
Bit-fields...................................... 247
Bits 45, 53, 60, 98, 124
Bits per second 291

Index

296

Bitwise AND................................... 53
Bitwise complement 53
Bitwise OR 53
Blocks.......................... 39, 40, 73, 92
Break ... 79
Brightness Control 134
Bytes.. 45
calibration.................................... 121
case... 76
cast ... 52, 190
char ... 48
Circular Buffers................... 167, 168
CISC.. 12, 13
COM.................... 289, 290, 291, 293
COM0A0................................. 57, 58
COM0A1................................. 57, 58
comments 161
Comments 39
Conditional 52, 62, 64, 96
Conditional Inclusion.................... 96
Connections Properties 290
Constants....................................... 49
Continue .. 79
Control Flow 73
Counters 119
CS00.... 57, 58, 59, 60, 194, 204, 235
CS0157, 58, 128, 129, 133, 135, 143,

150, 235
CS02.......................... 57, 58, 59, 235
Cylon......... 34, 35, 39, 46, 70, 94, 96
CylonEyes.c................................. 70
DAC .. 207
Data Types..................................... 45
databook.. 15
Debugging...... 51, 73, 110, 207, 210,

216, 221, 279
Declarations 50

Decrement....................................... 51
Demonstrator.c 99
Demonstrator.h........................... 99
Digi-Key.................... 17, 18, 66, 273
Digital Oscilloscope.................... 227
Digital to Analog Conversion 227
Division .. 51
Do-while.. 78
duration 192
Encapsulation 87
Equal to .. 52
Escape Sequences 82
Expressions 39, 45, 61, 62, 73
External variable 90
FIFOs .. 167
Flow Control 40, 98
FOC0A.......................... 58, 143, 150
FOCA.. 57
For ... 78
frequency..................................... 190
Function... 52, 87, 122, 157, 166, 169,

227, 230, 231, 232
Function Arguments 157
Function Generator 227
Function Pointers 169
Functions................. 41, 87, 169, 243
Goals ... 14
Goto... 80
Greater than 52
Headers.. 92
hexadecimal .. 43, 46, 47, 48, 82, 180
Hyperterminal 103, 118, 133, 136,

150, 173, 176, 188, 216, 223, 227,
230, 236, 289, 292, 293

If-Else and Else-If 74
Include Files.................................. 39
Increment.. 51

Index

297

Indirection....................................... 51
int .. 49
interrupt 178
Interrupts 109
itoa... 81
JAMECO 22, 26, 137, 225, 227, 273,

275, 276
joystick 15, 32, 33, 68, 75, 76, 98,

110, 111, 114, 116, 118, 119, 150,
151, 270, 292

Labels .. 80
LCD... 43
LED .. 23, 26, 43, 46, 69, 70, 75, 128,

129, 134, 136, 137
LEDs .. 15, 26, 27, 34, 35, 36, 39, 43,

45, 46, 47, 48, 65, 67, 68, 70, 115,
134, 135, 147, 154, 273

Left shift ... 53
Less than... 52
LIFOs .. 167
Light .. 219
Light Meter.................................. 219
Logical..................................... 52, 64
Logical NOT 52
long.. 49
Loops... 78
machine language.......................... 12
Macro Substitution 95
Main().. 42
masking 248
Member selection 51
messenger software 174
Modulo ... 51
Motor Speed Control................... 137
Multiplication.................................. 51
Negation ... 51
nitialization.................................... 92

NOT ... 53
Operators .. 40, 45, 50, 51, 52, 53, 61,

63
optoisolator.......................... 137, 144
Order of Evaluation....................... 62
OSCCAL_calibration.................. 122
oscillator... 99, 104, 105, 115, 121, 123,

124, 125, 127, 128, 130, 132, 140,
142, 147, 149, 162, 175, 178, 183,
199, 208, 222, 232, 235

PC_Comm.c 102
PC_Comm.h 102
Piezo.. 192
play a tune 194
Pointers.. 153
pointers to arrays 189
potentiometer............................... 225
Precedence..................................... 62
preprocessor 39, 94, 95, 97, 112, 246
Preprocessor 94
Programmers Notepad...... 19, 27, 36,

114, 130, 174, 182, 195
Pulse Width Modulation...... 134, 137
PWM ... 193
Queues................................. 167, 168
Real Time Clock... 15, 178, 182, 183,

188
Real Timer Clock Software 182
Recursion....................................... 93
Register variable............................ 90
Returns .. 89
reverse ... 81
Right shift 53
RISC.. 13
RS-232....................... 21, 22, 26, 289
RXD 21, 22, 96
Sawtooth Wave............................ 231

Index

298

Scope... 91
Simulation 35
simulator............................ 27, 32, 35
Sine Wave.................................... 231
sourceforge.............. 19, 35, 172, 189
Speedometer................................ 144
Square Wave................................ 231
Stacks .. 167
Statements 39, 40, 73
Statements and Blocks 73
Static variable................................ 90
strlen.. 81
Structure Arrays 246
Structures 241
Structures and Functions 243
Subtraction...................................... 51
Successive Approximation.......... 211
Switch.. 75
Tale of a bug................................. 73
TCC0RA 59, 60, 61, 135
TCCR0A 57, 58, 59, 60, 128, 129,

133, 135, 143, 150, 194, 204, 235
Temperature 220

Temperature Meter 220
tempo... 191
Testing Bits 60
Timer0 interrupt 194
Timers 109, 119
Triangle Wave 231
TXD 21, 22, 96
Typedef.. 246
Unary Plus 51
Unions ... 247
unsigned 49
Variable Names 49
Variables.. 90
Volt Meter 221
Waveform Generator Modes 60
WGM00 57, 58, 59, 60, 61, 128, 129,

133, 135, 143, 150, 194, 204, 235
WGM01 57, 58, 59, 60, 61, 128, 129,

133, 135, 143, 150, 194, 204, 235
While... 78
WinAVR. 15, 18, 19, 27, 31, 35, 113,

171, 177, 182, 189, 195, 198, 220,
221, 247, 270

299

Hwww.SmileyMicros.comH.

300

	Chapter 1: Introduction
	Why C?
	Why AVR?
	Goals

	Chapter 2: Quick Start Guide
	Software
	WinAVR – Oh, Whenever…
	Programmers Notepad
	AVRStudio – FREE and darn well worth it.
	Br@y++ Terminal:

	Hardware
	Constructing Your Development Platform

	Blinking LEDs – Your First C Program
	Write it in Programmers Notepad
	Download to the Butterfly with AVRStudio
	Blinky Goes Live
	Simulation with AVRStudio

	GOOD GRIEF!

	Chapter 3: A Brief Introduction to C – What Makes Blinky Bli
	Comments
	Include Files
	Expressions, Statements, and Blocks
	Operators
	Flow Control
	Functions
	The Main() Thing

	Chapter 4: C Types, Operators, and Expressions
	Data Types and Sizes
	Seen on a shirt at a Robothon event:
	Bits
	Bytes
	The long and short of it

	Variable Names
	Constants
	Declarations
	Arithmetic Operators
	Relational and Logical Operators
	Bitwise Operators
	Testing Bits

	Assignment Operators and Expressions
	Conditional Expressions
	Precedence and Order of Evaluation
	Projects
	Port Input and Output
	Cylon Eye Speed and Polarity Control

	Chapter 5: C Control Flow
	Statements and Blocks
	If-Else and Else-If
	Switch
	Loops – While, For and Do-while
	Break and Continue
	Goto and Labels
	A few practical examples: strlen, atoi, itoa, reverse

	Chapter 6: C Functions and Program Structures
	Function Basics
	Returns
	Variables External, Static, and Register
	Scope
	Headers
	Blocks
	Initialization
	Recursion
	Preprocessor
	Macro Substitution
	Conditional Inclusion

	Projects
	Is anybody out there? Communicating with a PC
	Demonstrator
	PC_Comm
	Using CommDemo:

	Chapter 7: Microcontroller Interrupts and Timers
	Interrupts
	Projects
	Grab your joystick – and test your interrupts
	Using joystick

	Timers/Counters
	Calibrating the Butterfly oscillator:
	OSCCAL_calibration() function – detailed explanation
	ALL THIS AND WE HAVEN’T EVEN STARTED CALIBRATING YET!

	Projects
	Precision Blinking
	Using Precision Blinking:

	Pulse Width Modulation – LED Brightness Control
	Pulse Width Modulation - Motor Speed Control
	Speedometer

	Chapter 8: C Pointers and Arrays
	Addresses of variables
	Function Arguments
	Arrays
	FIFOs and LIFOs: Stacks and Queues (Circular Buffers)
	Stacks
	Queues (Circular Buffers)

	Function Pointers
	Complex Pointer and Array Algorithms
	Projects
	Messenger
	Arrays in RAM and ROM

	Does anybody know what time it is? A Real Time Clock.
	A one second interrupt
	Converting Computer Time to Human Readable Time
	The Real Timer Clock Software

	Music to my ears. “Play it again Sam.”
	More on pointers to arrays
	Setting the frequency
	Setting the duration
	An example song array – Fur Elise
	Using the Piezo-element to make sound
	Initializing the Timer1 for PWM to the piezo-element.
	Generating the tone using PWM from Timer1
	Using the Timer0 interrupt to play a tune

	Chapter 9 – Digital Meets Analog – ADC and DAC
	But First - A Debugging Tale
	Analog to Digital Conversion
	What is Analog to Digital Conversion?
	Analog to Digital Conversion by Successive Approximation
	Analog to Digital Conversion with the ATMEGA169
	Starting a Conversion
	Conversion Timing
	Changing Channels
	Digital Noise Reduction
	Conditioning the Analog Input Signal
	Accuracy

	Projects
	Initializing the ADC
	Reading the ADC
	Light Meter
	Temperature Meter
	The @#%#&*#!!!! Volt Meter
	Using ADC

	DAC and ADC - Function Generator / Digital Oscilloscope

	Chapter 10: C Structures
	Structure Basics
	Structures and Functions
	Structure Arrays
	Typedef
	Unions
	Bit-fields
	Bit-Fields the C-way
	Bit-fields the masking-way

	Projects
	Finite State Machine

	Chapter 11 The Butterfly LCD
	PC to LCD test program
	Conclusion

	Appendix 1: Project Kits
	Data I/O
	PWM Motor Control

	Appendix 2: Soldering Tutorial
	Appendix 3: Debugging Tale
	Appendix 4: ASCII Table
	Appendix 5: Decimal, Hexadecimal, and Binary
	Appendix 6: Motor Speed Control Wheel
	Appendix 7: HyperTerminal
	Index

